
Computer Programming: Skills & Concepts (CP1)
Case Study: Coin change

18th October, 2010

CP1-12 – slide 1 – 18th October, 2010

Class rep Election

Volunteers?

CP1-12 – slide 2 – 18th October, 2010

Coin Change

We want to write a program that

I ask the user for an amount of money

I calculates the coins needed for this amount

I outputs the number of each coin

CP1-12 – slide 3 – 18th October, 2010

Type of Coins

Coins range from 1p to £2

const int
C1 = 200, C2 = 100, C3 = 50, C4 = 20,
C5 = 10, C6 = 5, C7 = 2, C8 = 1;

CP1-12 – slide 4 – 18th October, 2010

Three functions

if (ReadInput(&amount) != EXIT_SUCCESS) {
printf("Failure in ReadInput\n");
return EXIT_FAILURE;

}
if (CalculateCoins(amount) != EXIT_SUCCESS) {
printf("Failure in CalculateCoins\n");
return EXIT_FAILURE;

}
if (PrintResult(amount) != EXIT_SUCCESS) {
printf("Failure in PrintResult\n");
return EXIT_FAILURE;

}

CP1-12 – slide 5 – 18th October, 2010

Function structure of Program

.....

.....

int main(void) {

}

}

"Print no. of each coins"

}

int PrintResult(int amount) {

"assign n1, ..., n8 approp."

int CalculateCoins(int amount) {

}

"Take input from user"

int ReadInput(int* amount) {

int n1, n2,n3, n4, n5, n6, n7, n8;

const int C1 = 200, C2 = 100, C3 = 50, C4 =20,
 C5 = 10 C6 = 5, C7 = 2, C8 = 1;

CP1-12 – slide 6 – 18th October, 2010

Take Input from User

int input = 0 ;
printf("Enter the amount (in pence) to be returned

to the user: ");
scanf("%d", &input);

CP1-12 – slide 7 – 18th October, 2010

Take Input from User (Error Tolerant)

int input = 0 ;

do {
printf("Enter the amount (in pence) to be returned

to the user: ");
while (scanf("%d", &input) !=1) {
scanf("%*s");
printf("That wasn’t a number - please try again: ");

}

} while (input < 0);

CP1-12 – slide 8 – 18th October, 2010

Take Input from User (Full Function)

int ReadInput(int *amount) {
int input = 0 ;
do {
printf("Enter the amount (in pence) to be returned

to the user: ");
while (scanf("%d", &input) !=1) { scanf("%*s") ;
printf("That wasn’t a number - please try again: ");

}
} while (input < 0) ;
*amount = input ; // Set the value of amount to equal input
return EXIT_SUCCESS ;

}

A “trick” is being used here. The fact that input is initialised to 0 is allowing
us to check “success” by looking at the value of input (rather than testing the
expression scanf("%d", &input) itself).

This would not work if 0 was to be an acceptable value for input.

CP1-12 – slide 9 – 18th October, 2010

Take Input from User (Full Function)

int ReadInput(int *amount) {
int input = 0 ;
do {
printf("Enter the amount (in pence) to be returned

to the user: ");
while (scanf("%d", &input) !=1) { scanf("%*s") ;
printf("That wasn’t a number - please try again: ");

}
} while (input < 0) ;
*amount = input ; // Set the value of amount to equal input
return EXIT_SUCCESS ;

}

A “trick” is being used here. The fact that input is initialised to 0 is allowing
us to check “success” by looking at the value of input (rather than testing the
expression scanf("%d", &input) itself).

This would not work if 0 was to be an acceptable value for input.

CP1-12 – slide 10 – 18th October, 2010

Take Input from User (Full Function)

int ReadInput(int *amount) {
int input = 0 ;
do {
printf("Enter the amount (in pence) to be returned

to the user: ");
while (scanf("%d", &input) !=1) { scanf("%*s") ;
printf("That wasn’t a number - please try again: ");

}
} while (input < 0) ;
*amount = input ; // Set the value of amount to equal input
return EXIT_SUCCESS ;

}

A “trick” is being used here. The fact that input is initialised to 0 is allowing
us to check “success” by looking at the value of input (rather than testing the
expression scanf("%d", &input) itself).

This would not work if 0 was to be an acceptable value for input.

CP1-12 – slide 11 – 18th October, 2010

Coin-changing: problem-solving

We make an assumption:

I Enough coins to change any value without running out.

We use a Heuristic (rule-of-thumb):
I Start with the largest coin possible.

I Will need an if statement to compare values.

I We do this iteratively (apply this rule many times).
I Hence we will need a for or a while.

CP1-12 – slide 12 – 18th October, 2010

Coin-changing: problem-solving

We make an assumption:

I Enough coins to change any value without running out.

We use a Heuristic (rule-of-thumb):
I Start with the largest coin possible.

I Will need an if statement to compare values.

I We do this iteratively (apply this rule many times).
I Hence we will need a for or a while.

CP1-12 – slide 13 – 18th October, 2010

Coin-changing: problem-solving

We make an assumption:

I Enough coins to change any value without running out.

We use a Heuristic (rule-of-thumb):
I Start with the largest coin possible.

I Will need an if statement to compare values.

I We do this iteratively (apply this rule many times).
I Hence we will need a for or a while.

CP1-12 – slide 14 – 18th October, 2010

Calculate Coins

int pot = amount; // Total value of coins so far selected.

while (pot > 0) {

if (pot >= C1) {

pot -= C1; ++n1;

} else if (pot >= C2) {

pot -= C2; ++n2;

} else if (pot >= C3) {

pot -= C3; ++n3;

} else if (pot >= C4) {

pot -= C4; ++n4;

} else if (pot >= C5) {

pot -= C5; ++n5;

} else if (pot >= C6) {

pot -= C6; ++n6;

} else if (pot >= C7) {

pot -= C7; ++n7;

} else {

/* pot >= C8. (Why do we know this?) */

pot -= C8; ++n8;

}

} CP1-12 – slide 15 – 18th October, 2010

Catching Programming mistakes

assert(
n1*C1 + n2*C2 + n3*C3 + n4*C4 + n5*C5 + n6*C6
+ n7*C7 + n8*C8 == pot && pot <= amount
);

I Need to #include the <assert.h> header file

I The argument to assert must be a boolean condition

I If assert(expression) is false, the program stops with an error
message.

CP1-12 – slide 16 – 18th October, 2010

Catching Programming mistakes

assert(
n1*C1 + n2*C2 + n3*C3 + n4*C4 + n5*C5 + n6*C6
+ n7*C7 + n8*C8 == pot && pot <= amount
);

I Need to #include the <assert.h> header file

I The argument to assert must be a boolean condition

I If assert(expression) is false, the program stops with an error
message.

CP1-12 – slide 17 – 18th October, 2010

Output to User

int PrintResult(int amount) {
printf("%dp may be returned using the following

combination of coins:\n", amount);
if (n1) printf("%4d %dp coins,\n", n1, C1);
if (n2) printf("%4d %dp coins,\n", n2, C2);
if (n3) printf("%4d %dp coins,\n", n3, C3);
if (n4) printf("%4d %dp coins,\n", n4, C4);
if (n5) printf("%4d %dp coins,\n", n5, C5);
if (n6) printf("%4d %dp coins,\n", n6, C6);
if (n7) printf("%4d %dp coins,\n", n7, C7);
if (n8) printf("%4d %dp coins.\n", n8, C8);
return EXIT_SUCCESS;

}

CP1-12 – slide 18 – 18th October, 2010

Summary

Concepts revisited in this lecture:

I Functions

I scanf and error-checking

I global variables

I if . . . else statement

I The while statement

CP1-12 – slide 19 – 18th October, 2010

