(©Edinburgh University 2010 1

Computer Programming 1 Practical 1

Getting started in C

This is an assessed practical in four parts, A-D. Each part of the practical
guides you through the construction of a short program. To obtain credit for a
part, you must submit the program electronically via the submit command from
your own DICE account.

The deadline for completion and electronic submission of Practical Fxercise 1
is 2pm, Monday 18 October (week 5). In the absence of evidence of medical or
other difficulties, work submitted after the deadline will attract zero credit.

Aims
This practical exercise aims to:

e develop further your skill in programming on the DICE system, and famil-
iarise you with the “edit-compile-run” cycle;

e introduce you to some important programming concepts, such as type, vari-
able, expression and conditional execution;

e and, above all, instill confidence by guiding you through the process of
writing small programs.

Assessment

The maximum credit that can be obtained for this practical is 20 marks (out of
a total of 100 for the whole of the total coursework mark for the entire course).
Each of the following 4 tasks gains 5 marks.

A: Imperial-to-Metric distance converter. Write a program that prompts the
user for a number of miles, and also a number of yards, and outputs the
equivalent distance in kilometres to the screen.

B. Segment-Length Calculation. Write a program which interacts with a basic
graphics display to read in two points from the plane, and then returns the
length of the segment connecting those points.

C. Rectangle Statistics Program. Write a program that interacts with a basic
graphics display to read two points from the plane, then draws the implied
rectangle, computes the length of its diagonal, and classifies its shape.

D. Polygon Perimeter Calculator. Write a program which takes a sequence of
points from an interactive graphics tool and computes the perimeter of the
polygon defined by those points.

(©Edinburgh University 2010 2

Try to complete all four parts, keeping in mind that this will bring improved
programming skills (useful later!) as well as the marks for practical 1. But don’t
spend ezcessive time on the practical - if you find yourself getting hugely stuck on
some part, look for help (in the first instance, from the ‘InfBase’ demonstrators
on level 5 in the evenings; or alternatively from your lecturer or tutor).

Credit is given on the basis of the electronically submitted programs (and note
we always require source code, ie, the .c files).

If you don’t submit something, you get no credit for it.

Notes

e Read through this document before you reach the keyboard, and work out
in advance what you need to do. This document gives a significant amount
of help with your tasks.

e [t is perfectly acceptable to discuss the coursework specification with your
classmates, to ask for help with understanding the exercise, or to ask for
help with debugging. It is never acceptable to directly copy programs or
fragments of programs from others.

e If you are genuinely stuck, seek help. These early exercises are more con-
cerned with acquisition of skills than with testing your problem-solving
ability.

e Please use int variables when appropriate, and use float variables for
representing fractional numbers.

Electronic Submission

In this and future practicals, you need to submit files for marking. The procedure
uses an electronic submission system which records the dates on which you submit
the various items and saves a permanent record of your work for the external
examiner at the end of the year. This saves on paper and prevents your valuable
work from getting lost - note that if you submit a file more than once, we only
grade the final copy.

The general form of the submit command for this practical is

submit csl cpl P1 (file)

where (file) is the file to be submitted (convert.c, segment.c, rectangle.c or
polygon.c). You should issue this command in the shell window, having moved
to the directory which contains the file you want to submit.

(©Edinburgh University 2010 3

Preparation

This practical has associated template files. You will need to copy these files
into your directory so that you can modify them. First, make sure you have a
directory to hold your practical work; Practical 0 gave information on how to do
this.

To copy the templates, make sure you are in the directory that you have
created for this practical. Then issue the following command from inside a console
(or ‘terminal window’):

cp /group/teaching/cpl/Pracl/*x ./

The first argument given to cp (/group/.teaching/cpl/Pracl/*) is the location
we copy from, and the second argument (./) is the location we copy to - the
current directory. The “x” at the end of the first argument is a ‘wild-card’
meaning ‘every file’ (in that directory).

Part A

Open the file convert.c in the emacs editor. The file only has a few lines in it,
and you will need to fill in some basic things apart from writing the program.
In Part A you must write a program which prompts the user to first input some
(integer) number of miles, then some (integer) number of yards, and calculates
the equivalent number of kilometres for this distance. In doing this, you need
certain facts:

The number of yards-per-mile is 1760.0.
The number of kilometres-per-mile is 1.609.

The first thing to do in writing any program is getting the basic structure
(header files, main etc) of the program correct. Therefore as a first step, we
consider the simplest ANSI C program imaginable:

#include <stdlib.h>

int main(void)

{
return EXIT_SUCCESS;

Figure 1: The simplest C program

The program in Figure 1 is an ideal starting set of statements for convert.c
(or any program). It takes care (in the most basic possible way) of the three
initial issues for every C-program:

(©Edinburgh University 2010 4

e Libraries: One design feature of the C programming language is that some
very common operations, such as performing input and output, are not
supported directly by primitives in the language, but rather broken down
into simpler operations and stored as “functions” in an external “library.”
Even the most basic program will need to use some of these externally
defined functions. The #include “directive” at the first line of the program
makes available the many standard functions from the library stdlib.

e main Every C program must contain a function main. This is where ex-
ecution of the program begins. We haven’t discussed functions much at
this point. Later in the course we will see C programs that contain many
functions; however, the very simple programs we shall encounter in the cur-
rent exercise contain only a single function main. The part contained in
curly-parentheses { and } is the body of the main.

e return: As discussed in class, every function must complete with a return
statement on every execution. For the main function in Figure 1, the body
consists of a return statement and nothing else! The value returned is the
special value EXIT_SUCCESS, indicating that the program has terminated
successfully.

To start work on convert.c, type the program of Figure 1 into the emacs
buffer convert.c and save it. Compile the program by issuing the command
make convert in the shell window.! If your typing was accurate, the compilation
will be successful, otherwise you will need to correct the program using the editor
and try again. Once you are successful, the compiled version of the program
will appear in a new file named simply convert. (If you type 1s, the file may
appear highlighted in green; this signifies that the file is “executable”.) Now
run (execute) the resulting compiled program by typing ./convert in the shell
window. The program runs successfully... but nothing will be output. This is
because the program does not do anything at the moment!

We can make the program slightly more interesting by taking one step in the
direction of completing our programming task. Clearly, if we want to take in a
number-of-miles from the user of our program, we will need to have a printf-
statement (asking for number-of-miles) and a scanf-statement (to grab the num-
ber that the user types). Here is a strand of code which asks the user for the
number of miles and reads that number into a variable called miles:

printf ("Input the number of miles: ");
scanf ("%d", &miles);

I'Note that this is a different way of compiling than I have explained in class. In typing
make convert, you are making use of a “makefile” which has been set up to make working
easier. It provides the more complicated commands required to compile programs B, C, D in
conjunction with the graphics primitives on the system. It also has the advantage of keeping
the 4 executable files stored under individual names (rather than as a.out).

(©Edinburgh University 2010)

printf is an output function we saw in class. It is a flexible function that can
be used to output many kinds of values: here it is used to output a string,
i.e., a sequence of characters. We don’t end the string with a \n (the “newline
character”) because we want the user to type the number to the right of the
sentence. scanf is an input function we have seen in class. It also can read
various kinds of values, according to the character used after the %. Note that
to read into a variable, we must use &miles (where miles is the variable name)
rather than just miles (which is what would be used for output with printf).
In inserting this fragment into our “shell” for convert.c, we have two issues:

e To use printf and scanf we need to include the (stdio.h) library (The
stdio library contains various items concerned with input and output.)

e We have used a variable named miles (presumably an integer variable),
but never defined it.

Therefore to include the code-fragment above to our basic program, we will also
need to include (stdio.h) and will have to define miles, in the following way:

#include <stdlib.h>
#include <stdio.h>

int main(void)

{
int miles;
printf ("Input the number of miles: ");
scanf ("%d", &miles);
return EXIT_SUCCESS;
}

Figure 2: Reading part of the input for convert.c

Now try updating your program convert.c to the one shown in Figure 2.

Notice that all our statements are terminated with semi-colons.? Ensure that
your indentation is even within the body of the function main; as the program
becomes longer, it will be important to format it carefully to elucidate the struc-
ture. Now compile (by typing make convert) and run (using the command
./convert.c) the program. On this run, you should see the request for input
appear on the screen, and should be able to input an integer to the program!

However, there is still a lot of work to be done. The task of converting miles
and yards to kilometres is a generalized version of the “marathon” program that
we saw (and discussed) in the lecture on Thursday, 1st October. The difference is

2If you are familiar with Pascal, note that semicolon is used as a terminator rather than as
a separator when working with C.

(©Edinburgh University 2010 6

[rydell]lmcryan: ./convert
Input the number of miles: 5
Input the number of yards: O

5 miles and O yards equals 8.045000 kilometres

Figure 3: Example run of a (correct) convert.c implementation.

that instead of working with an exact distance (the marathon distance of 26 miles
and 385 yards), we allow the user to present any number of miles and of yards to
the program, and require the equivalent number of kilometres to be computed.
Because the number of miles and yards may vary (being given as input), we must
define variables to store these values. In Figure 2 we have given an example of
the definition of the miles variable and of its use as a place to store the inputted
number-of-miles. The following steps remain to be done, to complete Task A:

(i) A variable (of type int) for the number of yards needs to be defined, and
a code fragment written to request-and-read-in the yards from the screen
(as was done for “miles”);

(ii)) We need a float variable to store the number of kilometres (once it has
been computed), and we must output that number (once computed);

(iii) As was done for the basic “marathon” program of 1st October 09, we should
define global constants (which sit above the main function) to represent the
number of yards-per-miles, and number of kilometres-per-fractional-mile.
This will involve the const float declaration.

(iv) The code which does the converting must be written. It should be possible
to convert the “marathon” code for this.

(v) Please take care when working with both the int and float type in the
same arithmetic expression. It is best to explicitly perform casting using
(float) rather than leave it to the compiler.

We conclude this section, with an example of one run of a correctly-implemented
convert.c, as shown in Figure 3. Please use this as a comparison for your own
program, both to judge correctness of your calculations, and as a guide to for-
matting the input and output statements.

Obtaining credit Once you are sure that your program works, submit the file
convert.c using the submit command, as explained on page 2.

(©Edinburgh University 2010 7

Part B

Textual input and output is just one mode of interaction with a program; another
is graphical. In Part B, we construct a program that allows the user to specify
two points using the mouse, draws the line segment joining those points, and
computes the length of the segment. The program is required to manipulate
various kinds of data — numbers, points and line segments — and provides a
working introduction to the important notions of type and wvariable.

The program that you write for Part B will be written in segment.c. You
can compile this program using the compile command make segment, and run
the program by typing ./segment in the shell window. In addition to the two
#include directives that will be familiar from Part A, we now need a third:
#include "descartes.h". descartes.h provides a small set of types and func-
tions relating to simple geometric objects such as points and line segments. Points
in the plane are described by specifying the z- and y-coordinates, both integers.

As a first step, let us write a program that takes as input a single point p —
indicated by the user clicking the left mouse button while the cursor is within
the CPI1 graphics window — and outputs the z- and y-coordinates of p. The
descartes.h library provides a type point_t for representing points, and func-
tions GetPoint, XCoord and YCoord, for performing certain operations involving
points. By convention, the names of types start with a lower case letter and end
with _t, while functions start with an upper case letter.?

The purpose and mode of use of the functions GetPoint, XCoord and YCoord
may be gleaned from file descartes.h, an extract of which is presented in Fig-
ure 4. For each function, there is a comment, enclosed in /* and */, that states
informally what the function is intended to do, and a one-line “prototype” that
indicates the arguments of the function and its result. Thus the function XCoord
takes as argument a point p (of type point_t) and produces as result the z-
coordinate of p (of type int). The specification of the function YCoord can be
read off in an analogous way. The function GetPoint takes no argument but
returns a point (of type point_t). The function waits for the user to position
and click the left button of the mouse, and returns the point indicated by the
cursor, which appears as an arrow in the graphics window.

In outline, what needs to be done should be reasonably clear: call GetPoint
to capture the point indicated by the user, then apply the functions XCoord and
YCoord to extract the x- and y-coordinates of the point, and finally use printf to
write those coordinates to the screen. It is necessary to store the point between
the time it is captured using GetPoint, and processed by XCoord and YCoord.
For this purpose, we introduce a variable p by way of the declaration

point_t p;

3Consistency is important in a program. Type conventions provide a consistent way of
naming things and so make a program easier to read. There is no correct type convention,
though the one we use is quite common. Note that the libraries follow a different convention,
as printf demonstrates.

(©Edinburgh University 2010 8

/%

* Waits until the user clicks the mouse,

* then returns the point that the cursor is indicating.
*/

point_t GetPoint();

/*

* Creates a point with given coordinates.
*/

point_t Point(int a, int b);

/%

* Returns the x-coordinate of the point given as argument.
*/

int XCoord(point_t p);

/*

* Returns the y-coordinate of the point given as argument.
*/

int YCoord(point_t p);

Figure 4: Extract from descartes.h

The skeleton program already contains this declaration, together with two func-
tion calls opening the graphics package at the beginning and closing it at the end.
The variable p can be thought of as a box which is capable of containing a value
of type point_t. It may be initialised using the assignment statement

p = GetPoint();

The meaning of this is: evaluate the expression to the right of the equals-sign (in
this case, call the function GetPoint), and assign the result (in this case, the point
indicated by the cursor at the instant the mouse is clicked) to the variable on the
left of the equals-sign (in this case p). Add the above assignment statement to
the program immediately after the function call that opens the graphics window.
(The position is marked by a comment, which you will need to remove.) Note
that the parentheses in GetPoint () are essential, even though GetPoint does
not take an argument.

So far, we have read the point in, and stored it in the variable p. Now we
just need to write out the coordinates of the point to the screen. This can be
accomplished using the printf function, which we have already encountered.
An example should give the general idea of how it can be used in this context.
Executing the statement

printf ("The x-coordinate of that point is %d.\n", XCoord(p));

(©Edinburgh University 2010 9

will cause the message
The x-coordinate of that point is 172.

to appear in the shell window (assuming the z-coordinate of p is indeed 172).
Roughly, the effect of this statement is to cause the control string

"The x-coordinate of that point is %d.\n"

to be written to the shell window. However, when a conversion specification
such as %d is encountered, a value specified by one of the subsequent arguments
is substituted—in this instance there is just one, namely XCoord(p). There
are many possible conversion specifications; in this instance, %d indicates that a
decimal (whole) number is to be written. A control string may contain many
conversion specifications, each corresponding to a separate argument, the order
of the control specifications matching that of the arguments.
Add a printf statement to your program to output a message of the form

You clicked at the point (172, 87).

to the shell window, assuming XCoord(p) is 172 and YCoord(p) is 87. Test (i.e.,
compile and run) your program to make sure that what you have written so far
works. Recall that compiling is done by typing make segment and running by
typing ./segment. (To close the graphics window and terminate the program,
press the right mouse button in response to the prompt.)

Returning to the grand plan, we still need to (i) obtain a second point (say q)
from the user, (ii) form the line segment pq with end-points p and q, (iii) draw
the line segment on the drawing pad, and finally (iv) output the length of pg.
Step (i) is just a repeat of what we have already done, so let’s get it out of the
way immediately: introduce a new variable q of type point_t, initialise it using
GetPoint, and write out its coordinates using printf.

Referring again to descartes.h (see Figure 5) we see that Steps (ii) and (iii)
are straightforward, given the functions LineSeg, which takes two points and
returns the line segment joining those points, and DrawLineSeg, which takes a
line segment and displays it. Thus we just need to declare a new variable pq of
type lineSeg_t, initialise it using the assignment

pq = LineSeg(p, q);

and then display it using a call to the function DrawLineSeg. (Do this now!)
Finally use the function Length within a printf statement to print out a
message of the form

The length of the line segment is 29.529646.

or whatever. There is one additional technical fact you need to know. The result
of the function Length is a fractional, or “floating-point” number (of type float)
and not a whole number (of type int). The conversion specification appropriate
to floating-point numbers is %f.

(©Edinburgh University 2010 10

/*

* Creates a line segment with given endpoints.
*/

lineSeg_t LineSeg(point_t pl, point_t p2);
/*

* Returns the length of a line segment.
*/

float Length(lineSeg_t 1);

/*

* Draws a line segment.

*/

void DrawLineSeg(lineSeg_t 1);

Figure 5: A further extract from descartes.h

Obtaining credit When you are convinced that your program is functioning
correctly, submit the file segment .c using submit, as explained on page 2.

Things to consider (a) Roughly, what is the unit of length for z- and y-
coordinates when points are shown on the drawing pad? Experiment to determine
this quantity. (b) Suppose we had tried to avoid using a variable p by writing:

printf(" ... ", XCoord(GetPoint()), YCoord(GetPoint()))

Would this code have the correct effect? If not, why not.

Part C

The topics explored in this part are expressions and conditional execution. The
goal is to write a program that allows the user to enter a rectangle using the
mouse, computes the length of the diagonal of the rectangle, and classifies the
rectangle as tall, wide or almost square.

Set up Part C by opening file rectangle.c. You can compile this program
using the compile command make rectangle and run the program by typing
./rectangle in the shell window.

A quadrilateral is defined by its four vertices, which we may represent by
four variables, say p, q, r and s of type point_t. These vertices define four
edges, which may be represented by four variables, say pq, qr, rs and sp of type
lineSeg_t. Naturally, the edge pq joins vertices p and g, and so on. By giving
sensible and consistent names to variables we make the program easier both to
write and understand.

(©Edinburgh University 2010 11

1% q

Figure 6: A rectangle

A rectangle is a particular type of quadrilateral. Assuming the edges of a
rectangle are parallel to the sides of the computer screen, we can define a rectangle
by any two diagonally opposing vertices. For example, consider the rectangle in
Figure 6. If we know vertices p and r, then we can calculate q and s.

The idea is that the user will specify the vertices p and r by positioning the
mouse and clicking within the graphics window, once for either vertex. Starting
with the skeleton program provided:

1. Add variable declarations for the 4 vertices and edges of the rectangle.
2. Read in vertices p and r using two calls to GetPoint.

3. Add two assignment statements computing vertices q and s. Notice that
the z-coordinate of vertex q is the same as that of vertex r, and its y-
coordinate is the same as that of vertex p. Using this fact, and functions
XCoord, YCoord and Point, we can compute q (and also compute s).

4. Add four assignment statements to compute the four edges of the rectangle.
5. Draw the rectangle, using four calls to DrawLineSeg.

Most of the work required here is similar to Part B, and should not cause too
much trouble. Test your program to make sure that everything so far works.

Our next task is to determine the length of the diagonal of the rectangle we
have just drawn. This can be done by translating the formula from Pythagoras’s
Theorem into C code,* but there is an easier way; can you see it? Notice that
the diagonal is not, in general, a whole number, so we must use a floating-point

4If you go this way, note that 22 can be written x x x. There is a library function called
sqrt for computing square roots. In order to be able to use this, add a fifth directive, #include
<math.h> to the four which are already in place. The function sqrt returns an approximation
to the square root of its argument, so that, for example, sqrt(2.0) is some floating point
number close to 1.414.

(©Edinburgh University 2010 12

variable to represent it. Now add a printf statement that outputs the length of
the diagonal to the shell window, for example:

The diagonal of the rectangle has length 88.02568.

At this stage you might like to compile and run the program to make sure that
what you have written so far is working correctly.

The final stage introduces the notion of conditional execution in the form of
the if-statement. The goal is to classify the rectangle that has been input as
tall, wide or almost square. As a warm-up, we’ll attempt the simpler task of
distinguishing between tall and wide. Provisionally, let’s say that a rectangle
is tall if its height is greater than its width. Assuming h (respectively w) is an
integer variable containing the height (respectively width) of the rectangle, this
effect can be achieved by an if-statement of the form:

if (h>w) {
/* Write a suitable message to the Program I/0 window. */
} else {

/* Write a suitable message to the Program I/0 window. */

}
Observe that the condition
h>w

is enclosed in parentheses; don’t omit these, as they are required by the syntax of
C. In general, the condition governing an if-statement is an expression that can
be interpreted as having value true or false. The simplest such expressions are
constructed by comparing two arithmetic expressions using one of the relational
operators of C, such as <=, <, >, ==; the meaning of these should be fairly clear,
but note that equality is denoted by ==, to avoid confusion with assignment =.

if (/* Condition */) {
/* Action 1 %/

} else {
/* Action 2 */

}

To decide between more than two alternatives, we may nest the construction as
suggested in Figure 7. The meaning of this nested conditional is: Test Condi-
tion 1, Condition 2, and so on in turn, until the first true condition, say Con-
dition i, is found; then execute Action i. If all the conditions are false, execute
the Default action. Note that precisely one Action is performed, whatever the
circumstances.

Now we define a rectangle as tall if its height is at least 25% greater than its
width, wide if its width is at least 25% greater than its height, and almost square
otherwise. That is, a rectangle is tall precisely when A > 1.25 X w, wide precisely
when w > 1.25 x h and almost square otherwise. Note that the equivalent C
expressions will look something like:

(©Edinburgh University 2010 13

if (/* Condition 1 */) {
/* Action 1 */

} else if (/* Condition 2 */) {
/* Action 2 */

}
/* ... and so on until ... *x/{
} else {
/* Default action */
}
Figure 7: A nested if-statement
h>1.25 xw

Add a nested if-statement to your program which prints an appropriate mes-
sage, depending on which of the three categories the rectangle belongs.

Obtaining credit When your program seems to be working correctly, submit
the file rectangle.c using the submit command, as described on page 2.

Things to consider (a) How should test examples be chosen to rigorously test
the program?

Part D

The final part of the practical is intended to illustrate repetitive execution, as
embodied in the while-loop. The program you are required to write should allow
the user to input a polygon with an arbitrary number of sides, and then output the
total length of the perimeter of the polygon. Using the mouse, the user indicates
the vertices of the polygon, in the order in which they occur on the perimeter.
The final vertex is indicated by clicking the middle mouse button. From the
program’s point of view, this action returns a point with negative coordinates,
which is interpreted as a terminator for the input.

Since there is no a priori bound on the number of sides the polygon will have,
we are forced to use some iterative statement, in this instance, the while-loop.
At this stage, you are not expected to construct a while-loop from scratch, so the
basic structure of the loop is provided for you. Figure 8 gives a preview of what
will appear when you open polygon.c. You can compile the program by using
the compile command make polygon and run the program by typing ./polygon
in the shell window.

The idea is that the body of the while-loop will be executed once for each edge
of the polygon (except the final edge which closes it), which enables us to process

(©Edinburgh University 2010 14

each edge of the polygon in turn. The key variables curr and prev, of type
point_t, hold the “current” and “previous” vertices; the edge being processed is
the one which joins prev to curr.

It is important to appreciate that in order to complete the program it is not
necessary to understand exactly how the variables curr and prev acquire the
claimed values. All the essential information is encapsulated in the comment.
This illustrates an important point. It is not possible to conceive at one instant
the entire solution to some complex task, and hence it is essential to break that
complex task into simple tasks that can be tackled in isolation. If these simple
tasks are to have truly independent existences, it is crucial that each has a simple
and well-defined interface to the others. The comment in the loop is an attempt
to specify such an interface. Of course, the current exercise is sufficiently simple
that it can be held in the mind all at one time, but we shall soon encounter
exercises for which this is not so.

It is possible to compile and run the program as it stands; this would allow the
user to input the polygon using the graphics window, but there would be little
point, as there would be no visible effect. Add a call to DrawLineSeg within the
body of the loop, to draw the edge currently being processed. This will display
all edges except the last, which closes the polygon by connecting the the final
vertex back to the first. Add the necessary code after the loop to draw the final
edge, and test that the program works.

Aside from displaying the polygon in the graphics window, we are required
to compute the total length of the perimeter. To do this we introduce a floating
point variable, say cumulativeLength (of type float), that accumulates the sum
of the lengths of the edges as they are read in. Naturally, this variable should be
initialised to zero, which can be done at the point of declaration thus:

float cumulativelength = 0.0;

Now add an assignment statement to the body of the while-loop, to update
the variable cumulativeLength appropriately. Noting that we have still to take
account of the final edge, add a further assignment statement after the while-
loop to increase cumulativeLength by the length of that final edge. Finally add
a printf statement to print out a message informing the user of the length of
the perimeter of the polygon.

Obtaining credit After testing the program, submit the file polygon.c using
the submit command, as described on page 2.

Things to consider (a) What are suitable examples for testing? How can we
verify that the answer given by the program is (approximately) correct? (The
experiments following Part B may be useful here.) (b) After performing any
finite sequence of experiments, can we be certain that the program is performing
correctly?

(©Edinburgh University 2010 15

#include <stdlib.h>
#include <stdio.h>
#include "descartes.h"

int main(void)

{
point_t curr, /* Current point */
prev, /x Previous point */
init; /* Initial point */
lineSeg_t 1; /* Line segment joining prev and curr */
OpenGraphics();
prev = GetPoint();
curr = GetPoint();
init = prev; /* this stores the first vertex in the
variable "init": we need to remember it,
to be able to join it to the last vertex
when it is entered */
while (XCoord(curr) >= 0) {
/*
* Process the current edge.
* The current edge joins the previous
* vertex "prev" to the current vertex "curr".
*/
prev = curr;
curr = GetPoint();
+
/*
* Now tackle the last edge - remember, the first vertex
* is stored in the variable "init"
*/
CloseGraphics();
return EXIT_SUCCESS;
b

Figure 8: The skeleton program for Part D

