1. The log* function (different from log itself - the * is important), which is applied to a number n, is defined to be the number of times one has to repeatedly apply log to n before the answer becomes less than or equal to 1. For example, assuming base 10 logs, we have that:

\[\log^*(5) = 1, \log^*(50) = 2, \log^*(500) = 2, \log^*(5000000) = 2, \log^*(10^{50}) = 3. \]

Assuming that double log(double x) is the log function, write a recursive \texttt{logstar} to compute log*. The type of this function will be:

```
int logstar(double x)
```

2. Now write a new function \texttt{logstar2} which computes the same answer but using iteration (ie, a \texttt{for} or a \texttt{while}) rather than recursion. The type of the function is identical:

```
int logstar2(double x)
```
Fibonacci

In class in lecture 25 we saw a recursive algorithm which computes the value of F(n) the n-th Fibonacci number. We also showed on the board, how we could compute F(n) iteratively (via a loop, not recursively).

Write an iterative program (ie use for or while) which computes all the fibonacci numbers for 1 to 20 and stores them in a global array fibs. The type of the function should be:

```c
int twentyfibs(void)
```

Testing

Make a new copy of mergesort.c called mergerec.c and replace the original code of the mergesort function with the new recursive code on slide 14 of Lecture 25. Do some runtime experiments with this new recursive function, and compare to the results for original mergesort.