
Computer Programming: Skills & Concepts (CP)
Arrays

Cristina Alexandru

Monday 16 October 2017

CP Lect 9 – slide 1 – Monday 16 October 2017

What is an array?

An array is a collection of variables of the same type, grouped under a
single name, with individual items being picked out via ‘indexing’.

Here is an example of declaring an array:

int a[8];

We can make a similar declaration for any standard (int, float,

double, char) or user defined type (coming in week 8), for any
constant size (8 is the size for this example).

CP Lect 9 – slide 2 – Monday 16 October 2017

More about arrays

The declaration of a creates 8 individual variables (“elements”, or “cells”)
organised at consecutive memory locations, accessible via “indexing”

a a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

0 1 2 3 4 5 6 7

(subscript or index)

To access the individual variables (“cells”) in the array:
I a[0] is the 0th cell of array a

I life is less confusing if we always count from zero

I a[1] is the 1st (1th?) cell

I . . .

I a[7] is the 7th (the final) cell
I a[i] is the i-th cell of a

I assuming i is a variable of type int with value in the range 0 . . . 7

CP Lect 9 – slide 3 – Monday 16 October 2017

fibonacci with arrays

Remember the Fibonacci function F (n) in lecture 6.

I Defined via the following recurrence

F (n) =

0 n = 0
1 n = 1

F (n − 1) + F (n − 2) otherwise

I Programs fibonacci.c, fibonacci-for.c use variables
previous, current and next to compute F(n).

I (good) Efficient in terms of number of variables - we have n, an
counting variable called count, and the 3 above.

I (bad) Ungainly, and error-prone, in the details of updating previous,
current and next within the loop.

There is, of course, a simpler way!

CP Lect 9 – slide 4 – Monday 16 October 2017

fibonacci with arrays

We can define an array (called fib) to store the various
Fibonacci numbers F(n) up to a limit (say 100).

Advantages and Disadvantages

I (good) We won’t have to do the delicate arranging of previous,
current on each iteration of the loop.

I (bad) We will have an upper limit on the values of n we can handle,
because arrays must be constant-size.

I In many languages, the size of an array can be assigned dynamically
at run-time, but not in standard ANSI C. There is a way to get round
it, but not until later.

CP Lect 9 – slide 5 – Monday 16 October 2017

fibonacci-arr.c

“program design” - straight from the recursive definition of F(n)

.... /* omitting header-files */

#define MAXFIB 100

int main(void) {

int n, i;

int fib[MAXFIB];

fib[0]=0;

fib[1]=1;

.... /* omitting scanf for n */

if ((n < 0) || (n > MAXFIB-1)) {

printf("Not an appropriate integer.\n");

} else {

for(i=2; i <= n; i++) {

fib[i] = fib[i-1]+fib[i-2];

}

printf("Fibonacci number %d is %d.\n", n, fib[n]);

}

return EXIT_SUCCESS;

} CP Lect 9 – slide 6 – Monday 16 October 2017

Notes on fibonacci-arr.c

I The first element of fib has index 0, and the final element has
index MAXFIB - 1 (which is 99).

I We refer to the entire array as fib.

I All the elements (or cells) of the array have type int. We refer to
these individual elements as fib[0], fib[1], and so on up to
fib[MAXFIB-1] (or fib[99]).

I Array indices are always expressions of type int

I The advantage of arrays is greatest when we can/need-to iterate
through the arrays via the use of a changing index variable (this
‘index’ is i in the case of fibonacci-arr.c)

I “Arrays are pointers” – fib is actually an address (of the first cell
fib[0]) in memory).

CP Lect 9 – slide 7 – Monday 16 October 2017

More notes on fibonacci-arr.c

I Use of #define
I #define just substitutes the value (100) for the identifier (MAXFIB)

during gcc’s pre-processing step.
I Can’t use const int in Standard ANSI C if the identifier will be

used for an array index.
I A cleaner alternative is enum { MAXFIB = 100 }; which we’ll

explain later – but #define is traditional.
I The bound on n that we can work with?

I An artificial bound introduced because of array use (unfortunately).
I An entirely reasonable limit for Fibonacci numbers as it happens.
I As i grows, the value of F (i + 1)/F (i) tends to (1 +

√
5)/2, roughly

1.61. So F (i) grows exponentially.
I The max value of an int in C on DICE is 231 − 1.
I As it happens F (i) becomes greater than 231 − 1 at 47
I . . . so we see negative numbers output (“wraparound” error) for 47

onwards
I Even we use the ’long’ (64-bit integer on DICE) type for fib, we will

exceed max size for ’long’ before F (99) = 2.18× 1020.

CP Lect 9 – slide 8 – Monday 16 October 2017

Initializing arrays

If you want to initialize an array to specific values, you can write:

#define SIZE 8

/* initialize to the first 8 primes */

int a[SIZE] = { 2, 3, 5, 7, 11, 13, 17, 19 };

Warning: If you give too many values, gcc will complain; if you give too
few, it will silently leave the last elements of the array uninitialized!

CP Lect 9 – slide 9 – Monday 16 October 2017

Where the power lies

An array index is a integer expression, not a constant, so its value isn’t
determined until the program is run. The precise array element referred
to by a[i] depends on the current value of i

Example:

for (i = 0; i < SIZE; i++) { a[i] = 0; }

Effect: Initialise all elements of the array a to zero. Same as:

a[0] = 0;

a[1] = 0;

...

a[SIZE - 1] = 0;

Be careful NOT to access cells with a later index than defined (eg i taking
the value SIZE +2). C does not check array index limits.

CP Lect 9 – slide 10 – Monday 16 October 2017

whatday with arrays
#include <stdio.h>

#define MONTHS_IN_YEAR 12

#define DAYS_IN_WEEK 7

int main(void) {

int day, month, days, i;

/* WARNING: arrays start at zero, so January has index 0 */

int daysinmonth[MONTHS_IN_YEAR] = { 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

char *daynames[DAYS_IN_WEEK] = {"Sunday","Monday", "Tuesday",

"Wednesday", "Thursday",

"Friday", "Saturday"};

/* read the requested day and month in from user ... */

printf("enter day and month\n"); scanf("%d%d",&day,&month);

days = day-1; /* first account for days since 1st */

for (i=1; i < month; i++) {

days = days + daysinmonth[i-1];

}

/* 1 Jan has days == 0, and was a Sunday */

printf("It was a %s\n", daynames[(days)%DAYS_IN_WEEK]);

return EXIT_SUCCESS;

} CP Lect 9 – slide 11 – Monday 16 October 2017

Arrays of any type

We haven’t discussed typedef or struct formally yet . . . though we will
see, in Lab sheet 4, these words used to define a type for representing
points in the plane.
An array of points could be used to represent a polygon with up to MAX

vertices.

typedef struct {

int x, y;

} point_t;

point_t vertex[MAX];

Question: How do we deal with a polygon with fewer than MAX vertices?

CP Lect 9 – slide 12 – Monday 16 October 2017

Polygon as an array of vertices

(1,0)

(0,1)

(2,2)
(0,2)

(4,1)

(3,0)

........0 2 2 2 4 1 3 0

vertex[0] vertex[1] vertex[2] vertex[3]

CP Lect 9 – slide 13 – Monday 16 October 2017

Arrays as parameters

int Max(int b[], int n) {

/* n is the number of elements in array b. Max returns

* the maximum element of b. NB: We lose the size of

* the array when we pass it as a parameter */

int i, maxSoFar;

maxSoFar = b[0];

for (i = 1; i < n; ++i) {

if (b[i] > maxSoFar) { maxSoFar = b[i]; }

}

return maxSoFar;

}

....

printf("The maximum value is %d.\n", Max(a, 8));

CP Lect 9 – slide 14 – Monday 16 October 2017

Arrays are ‘pointers’

void Rotate(int b[], int n) {

/* Aim: rotate the elements of an array cyclically. */

int i;

int temp; /* Temporary storage (like in swap). */

temp = b[n - 1];

for (i = n - 1; i > 0; --i) { b[i] = b[i - 1]; }

b[0] = temp;

}

....

Rotate(a, 8);

Question: Is a cyclically rotated or unchanged?

CP Lect 9 – slide 15 – Monday 16 October 2017

Arrays are ‘pointers’

The answer is that it is rotated.
The reason? Roughly it is because an array in C is a pointer (to its zeroth
element).

I The actual parameter a is a pointer to an integer.

I The formal parameter b[0] is a synonym for *b.

I The formal parameter b[i] is a synonym for *(b+i).

good: Means we don’t need to use & and * to get the effect of
“call-by-reference” with array parameters (see swap.c in Lab 5).

bad: We always have to incorporate an extra parameter (eg, n in Rotate)
to allow the length of the array to be passed into the function.

CP Lect 9 – slide 16 – Monday 16 October 2017

Arrays of arrays

Array elements can themselves be arrays. So, for example, a matrix with
N rows and M columns could be defined as:

float matrix[N][M];

We’d then expect to be able to write a function that multiplies a vector x
by a matrix a with header

void LinTransform(float a[][],

float x[],

float y[],

int n, int m);

However C does not allow this - declaration for a must instead be of the
form a[][10] or a[][8] or similar.
To understand why, check out Kelley & Pohl [KP, §6.12].

CP Lect 9 – slide 17 – Monday 16 October 2017

Reading Material

Relevant sections of Chapter 6, Kelley and Pohl.

I Specifically, 6.1, 6.4, 6.6 and 6.12

CP Lect 9 – slide 18 – Monday 16 October 2017

