
Computer Programming: Skills & Concepts (CP)
Arithmetic operations, int, float, double

C. Alexandru

26 September 2017

CP Lect 4 – slide 1 – 26 September 2017

Monday’s lecture

I Variables and change-of-state

I The “squaring” problem.

I Types of variables: int.

I Assigning and re-assigning values to a variable.

I The if-statement.

I Input using scanf.

CP Lect 4 – slide 2 – 26 September 2017

Today’s lecture

I Arithmetic Operations for int

I Quadratic Equations.

I More types: double (and float).

CP Lect 4 – slide 3 – 26 September 2017

Arithmetic Operators for int

+ Addition.

- Subtraction or negation.

* Multiplication (don’t use x).

/ Division – order is important here!

I What is 4/2 ?
I What is 5/2 ?

% Integer remainder (eg, 5 % 3 = 2).

I You’ve seen % used for something else . . .
I nothing whatsoever to do with this % !

++ Increment (x++ means x = x+1).

-- Decrement (x-- means x = x-1).

^ (sometimes used in ‘real life’ for powers – e.g., x 3̂) is NOT an arithmetic

operation in the C programming language – for powers, use the * operator

(repeatedly) or the pow function from math.h.

CP Lect 4 – slide 4 – 26 September 2017

Solving quadratic equations

Consider any quadratic polynomial of the form ax2 + bx + c , a 6= 0.
We know this equation has exactly two complex roots (solutions to
ax2 + bx + c = 0) given by:

x =
−b ±

√
b2 − 4ac

2a
.

Suppose we want real roots ONLY.

Three cases:

I If b2 < 4ac, there are no real solutions.

I If b2 = 4ac, there is one (repeated) real solution: −b/(2a).

I If b2 > 4ac, there are two different real solutions.

CP Lect 4 – slide 5 – 26 September 2017

C program to Solve Quadratic Equations

x =
−b ±

√
b2 − 4ac

2a
.

Steps of our program:

I Take in the inputs a, b and c from the user (scanf).
I check that b2 − 4ac is non-negative.

I If negative, output a message about “No real roots”.
I If positive, proceed.

I Get the square root of b2 − 4ac.

I Output both roots (or one if repeated).

I return EXIT_SUCCESS;

We cannot continue working with int variables only.
We do not expect the roots to be integers even when a, b, c are.

CP Lect 4 – slide 6 – 26 September 2017

Real numbers in C

For working with “real numbers” in C, there are two standard
options: float and double. Neither type can truly represent
all real numbers – both types have a limited number of
significant digits. But they work well as an approximation for
reals.

We will require the coefficients input for the quadratic equation to be
int. However we will also need some float or double variables for the
roots.

CP Lect 4 – slide 7 – 26 September 2017

Types: float

I A signed floating-point number: numbers with decimal points.

I Form to write a float is a decimal number optionally followed by e

(or E) and an integer exponent:
I For example:

I 1.5, -2.337, 6e23 (having values 1.5, −2.337 and 6 × 1023)
I 0.0, 0., .0 (all of these have value 0.0)

I Accurate to about 7 significant digits:
I Max value is 3.402823× 1038 on DICE (system dependent);
I Requires the same amount of storage as int.

I Contrast with real numbers in mathematics?
I printf("%f", floatVar) and scanf("%f", &floatVar).

I %f means “float”

I Stored in 32-bit sign(1)/exponent(8)/mantissa(23) representation.

CP Lect 4 – slide 8 – 26 September 2017

Types: float

I A signed floating-point number: numbers with decimal points.

I Form to write a float is a decimal number optionally followed by e

(or E) and an integer exponent:
I For example:

I 1.5, -2.337, 6e23 (having values 1.5, −2.337 and 6 × 1023)
I 0.0, 0., .0 (all of these have value 0.0)

I Accurate to about 7 significant digits:
I Max value is 3.402823× 1038 on DICE (system dependent);
I Requires the same amount of storage as int.

I Contrast with real numbers in mathematics?

I printf("%f", floatVar) and scanf("%f", &floatVar).
I %f means “float”

I Stored in 32-bit sign(1)/exponent(8)/mantissa(23) representation.

CP Lect 4 – slide 8 – 26 September 2017

Types: float

I A signed floating-point number: numbers with decimal points.

I Form to write a float is a decimal number optionally followed by e

(or E) and an integer exponent:
I For example:

I 1.5, -2.337, 6e23 (having values 1.5, −2.337 and 6 × 1023)
I 0.0, 0., .0 (all of these have value 0.0)

I Accurate to about 7 significant digits:
I Max value is 3.402823× 1038 on DICE (system dependent);
I Requires the same amount of storage as int.

I Contrast with real numbers in mathematics?
I printf("%f", floatVar) and scanf("%f", &floatVar).

I %f means “float”

I Stored in 32-bit sign(1)/exponent(8)/mantissa(23) representation.

CP Lect 4 – slide 8 – 26 September 2017

Types: double

I A float with double precision.

I Same form for writing double as float in programs.
I Accurate to about 15 significant digits:

I Max value is 1.7976931348623157× 10308;
I Requires twice the storage space of float;
I Values may depend on your computer.

I printf("%lf", doubleVar) and scanf("%lf", &doubleVar)
I The %lf means ‘long float’.
I Actually, the C standard says you should

printf("%f",doubleVar); but most compilers also allow %lf,
which is more consistent. Use either, but

I remember you must use "%lf" to scan a double.

I Stored in 64-bit sign(1)/exponent(11)/mantissa(52) representation.

CP Lect 4 – slide 9 – 26 September 2017

float or double ?

I floats are not precise enough for most scientific or engineering
calculations, so

I the standard maths libraries all work with doubles, so

I always use doubles unless you have a good reason to use floats

I (for example, if you’re doing lots of computation on lots of numbers;
or in some graphics applications where double precision is useless)

I and anyway, 9.36 is really a double – to get an actual float, you
have to write 9.36f

CP Lect 4 – slide 10 – 26 September 2017

Writing float/double in programs

#include <stdlib.h>

#include <stdio.h>

int main(void) {

float x, x2;

double y, y2;

x = 1e8 + 5e-4;

x2 = -0.2223;

y = 1e8 + 5e-4;

y2 = -6e306;

printf("Two floats are %f\n and %f.\n", x, x2);

printf("Two doubles are %lf\n and %lf.\n", y, y2);

return EXIT_SUCCESS;

}

CP Lect 4 – slide 11 – 26 September 2017

Output from float/double

zagreb: ./a.out

Two floats are 100000000.000000

and -0.222300.

Two doubles are 100000000.000500

and -6000000000000000415146435945218699544294763362085459

8420126115503945248872404569187418808157783928463113189413

9451804157162361475827507299487506852076765339123136457002

1480187142842148415306933169404320733422827669951287867963

4094905773013933547655429167101887147924700636668768497796

83791229808236015124480.000000.

Is there a mistake in the printing out of x and of y2?
No! The first few digits are correct (float (resp. double) guarantees
the first 7 (resp. 15)).

CP Lect 4 – slide 12 – 26 September 2017

double vs float – example

#include <stdio.h>

#include <stdlib.h>

int main() {

double x = 0.0;

int i = 0;

while (i < 1000000) {

x = x + 0.9; i = i + 1;

}

printf("%f\n",x);

return EXIT_SUCCESS;

}

prints:

900000.000015

#include <stdio.h>

#include <stdlib.h>

int main() {

float x = 0.0;

int i = 0;

while (i < 1000000) {

x = x + 0.9; i = i + 1;

}

printf("%f\n",x);

return EXIT_SUCCESS;

}

prints:
892043.562500

an error of almost 1% !

CP Lect 4 – slide 13 – 26 September 2017

double vs float – example

#include <stdio.h>

#include <stdlib.h>

int main() {

double x = 0.0;

int i = 0;

while (i < 1000000) {

x = x + 0.9; i = i + 1;

}

printf("%f\n",x);

return EXIT_SUCCESS;

}

prints:
900000.000015

#include <stdio.h>

#include <stdlib.h>

int main() {

float x = 0.0;

int i = 0;

while (i < 1000000) {

x = x + 0.9; i = i + 1;

}

printf("%f\n",x);

return EXIT_SUCCESS;

}

prints:
892043.562500

an error of almost 1% !

CP Lect 4 – slide 13 – 26 September 2017

double vs float – example

#include <stdio.h>

#include <stdlib.h>

int main() {

double x = 0.0;

int i = 0;

while (i < 1000000) {

x = x + 0.9; i = i + 1;

}

printf("%f\n",x);

return EXIT_SUCCESS;

}

prints:
900000.000015

#include <stdio.h>

#include <stdlib.h>

int main() {

float x = 0.0;

int i = 0;

while (i < 1000000) {

x = x + 0.9; i = i + 1;

}

printf("%f\n",x);

return EXIT_SUCCESS;

}

prints:

892043.562500

an error of almost 1% !

CP Lect 4 – slide 13 – 26 September 2017

double vs float – example

#include <stdio.h>

#include <stdlib.h>

int main() {

double x = 0.0;

int i = 0;

while (i < 1000000) {

x = x + 0.9; i = i + 1;

}

printf("%f\n",x);

return EXIT_SUCCESS;

}

prints:
900000.000015

#include <stdio.h>

#include <stdlib.h>

int main() {

float x = 0.0;

int i = 0;

while (i < 1000000) {

x = x + 0.9; i = i + 1;

}

printf("%f\n",x);

return EXIT_SUCCESS;

}

prints:
892043.562500

an error of almost 1% !

CP Lect 4 – slide 13 – 26 September 2017

Mixing Types, and Casting

I / does integer division on ints: 3/2 → 1

I It does real division on doubles: 3.0/2.0 → 1.5.
I What if we mix doubles and ints? 3.0/2 → ? 3/2.0 → ?

I The int gets promoted to double:
3.0/2 → 3.0/2.0 → 1.5 and 3/2.0 → 3.0/2.0 → 1.5

I This happens with all arithmetic operators. BUT beware that it
happens ‘from the inside out’:
(5/2)*1.2 → 2*1.2 → 2.4

I If int x,y; how do we do real division of x by y?
I Can use promotion: (x*1.0)/y → xdbl/y → xdbl/ydbl

I Clearer and safer to cast: explicitly convert types:
(double)x/(double)y → xdbl/ydbl

I Be careful: (double)(5/2) → (double)(2) → 2.0

I Alternatively:
double xd, yd;

xd = x; yd = y; xd/yd

CP Lect 4 – slide 14 – 26 September 2017

Mixing Types, and Casting

I / does integer division on ints: 3/2 → 1

I It does real division on doubles: 3.0/2.0 → 1.5.
I What if we mix doubles and ints? 3.0/2 → ? 3/2.0 → ?
I The int gets promoted to double:

3.0/2 → 3.0/2.0 → 1.5 and 3/2.0 → 3.0/2.0 → 1.5

I This happens with all arithmetic operators. BUT beware that it
happens ‘from the inside out’:
(5/2)*1.2 → 2*1.2 → 2.4

I If int x,y; how do we do real division of x by y?
I Can use promotion: (x*1.0)/y → xdbl/y → xdbl/ydbl

I Clearer and safer to cast: explicitly convert types:
(double)x/(double)y → xdbl/ydbl

I Be careful: (double)(5/2) → (double)(2) → 2.0

I Alternatively:
double xd, yd;

xd = x; yd = y; xd/yd

CP Lect 4 – slide 14 – 26 September 2017

Mixing Types, and Casting

I / does integer division on ints: 3/2 → 1

I It does real division on doubles: 3.0/2.0 → 1.5.
I What if we mix doubles and ints? 3.0/2 → ? 3/2.0 → ?
I The int gets promoted to double:

3.0/2 → 3.0/2.0 → 1.5 and 3/2.0 → 3.0/2.0 → 1.5
I This happens with all arithmetic operators. BUT beware that it

happens ‘from the inside out’:
(5/2)*1.2 → 2*1.2 → 2.4

I If int x,y; how do we do real division of x by y?
I Can use promotion: (x*1.0)/y → xdbl/y → xdbl/ydbl

I Clearer and safer to cast: explicitly convert types:
(double)x/(double)y → xdbl/ydbl

I Be careful: (double)(5/2) → (double)(2) → 2.0

I Alternatively:
double xd, yd;

xd = x; yd = y; xd/yd

CP Lect 4 – slide 14 – 26 September 2017

Mixing Types, and Casting

I / does integer division on ints: 3/2 → 1

I It does real division on doubles: 3.0/2.0 → 1.5.
I What if we mix doubles and ints? 3.0/2 → ? 3/2.0 → ?
I The int gets promoted to double:

3.0/2 → 3.0/2.0 → 1.5 and 3/2.0 → 3.0/2.0 → 1.5
I This happens with all arithmetic operators. BUT beware that it

happens ‘from the inside out’:
(5/2)*1.2 → 2*1.2 → 2.4

I If int x,y; how do we do real division of x by y?
I Can use promotion: (x*1.0)/y → xdbl/y → xdbl/ydbl

I Clearer and safer to cast: explicitly convert types:
(double)x/(double)y → xdbl/ydbl

I Be careful: (double)(5/2) → (double)(2) → 2.0

I Alternatively:
double xd, yd;

xd = x; yd = y; xd/yd

CP Lect 4 – slide 14 – 26 September 2017

Mixing Types, and Casting

I / does integer division on ints: 3/2 → 1

I It does real division on doubles: 3.0/2.0 → 1.5.
I What if we mix doubles and ints? 3.0/2 → ? 3/2.0 → ?
I The int gets promoted to double:

3.0/2 → 3.0/2.0 → 1.5 and 3/2.0 → 3.0/2.0 → 1.5
I This happens with all arithmetic operators. BUT beware that it

happens ‘from the inside out’:
(5/2)*1.2 → 2*1.2 → 2.4

I If int x,y; how do we do real division of x by y?
I Can use promotion: (x*1.0)/y → xdbl/y → xdbl/ydbl

I Clearer and safer to cast: explicitly convert types:
(double)x/(double)y → xdbl/ydbl

I Be careful: (double)(5/2) → (double)(2) → 2.0

I Alternatively:
double xd, yd;

xd = x; yd = y; xd/yd

CP Lect 4 – slide 14 – 26 September 2017

Mixing Types, and Casting

I / does integer division on ints: 3/2 → 1

I It does real division on doubles: 3.0/2.0 → 1.5.
I What if we mix doubles and ints? 3.0/2 → ? 3/2.0 → ?
I The int gets promoted to double:

3.0/2 → 3.0/2.0 → 1.5 and 3/2.0 → 3.0/2.0 → 1.5
I This happens with all arithmetic operators. BUT beware that it

happens ‘from the inside out’:
(5/2)*1.2 → 2*1.2 → 2.4

I If int x,y; how do we do real division of x by y?
I Can use promotion: (x*1.0)/y → xdbl/y → xdbl/ydbl

I Clearer and safer to cast: explicitly convert types:
(double)x/(double)y → xdbl/ydbl

I Be careful: (double)(5/2) → (double)(2) → 2.0

I Alternatively:
double xd, yd;

xd = x; yd = y; xd/yd

CP Lect 4 – slide 14 – 26 September 2017

Reading material

Sections 2.8, 2.9, 2.10, 2.11 of “A book on C” discuss Operators, Operator
precedence, and assignments (ie, material from Monday’s lecture).

Section 3.6 (The Floating Types) of “A Book on C”.

CP Lect 4 – slide 15 – 26 September 2017

