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main()

So far, we’ve been telling you that the type of the main function is
int main(void).
This is a simplification! The actual type is:
int main(int argc, char *argv[], char *envp[])

and what people usually use is
int main(int argc, char *argv[])

The arguments of main() are the way we pass arguments to programs,
as when you do cp a.out myprog.
In Unix (and many other) systems, a program is called with any number
of arguments, each of which is a string.
By convention, the first (zero’th!) argument is the name of the program
(e.g. cp), and the remaining arguments are what the user sees as
arguments (a.out and myprog).
When your program is called, argc is the number of arguments (including
the zero’th), and argv[i] is the i ’th argument string.
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Argument Example

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

int i;

printf("There are %d arguments. They are:\n",argc);

for (i=0; i<argc; i++) {

printf("Arg %d is \"%s\"\n",i,argv[i]);

}

return EXIT_SUCCESS;

}
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pula: gcc arg.c

pula: ./a.out first second "third argument" and\ fourth '"quotes"'

There are 6 arguments. They are:

Arg 0 is "./a.out"

Arg 1 is "first"

Arg 2 is "second"

Arg 3 is "third argument"

Arg 4 is "and fourth"

Arg 5 is ""quotes""

What about envp? This is the array of ‘environment variables’ that are
used as general way to make information available to all programs. The
usual way to get at the environment is with getenv() and putenv()

(see their manual pages), so we never usually even notice the existence of
envp.
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Things we haven’t covered

C is a fairly large language, and it also evolves.
We have been teaching ‘C89’, which is supported by all current compilers.
Officially, C89 is obsolete, having been succeeded by ‘C99’. But C99 is
not well supported.
Officially, C99 is obsolete, having been succeeded by ‘C11’. But . . .
In the open source world, everybody uses gcc, which supports some bits of
C99 and a number of extensions of its own. Two of these are so common
that I’ve accidentally used them in your code:

I In C89, variable declarations must come before the code (in each
block), but in GNU C (and C99) you can mix them.

I GNU C and C99 allow single line comments starting with //

The remaining slides list (for personal study) the main features of C89
that we have not covered in this course, concentrating on ones you can
expect to see in any program off the Web.
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Writing constants

In addition to the decimal integers and floating point number in point and
scientific notation:
Hexadecimal integers: 0x123FAB78

Octal integers: 0123 is 83 decimal. (Beware of this!)
and even hexadecimal floating point.
You can suffix numbers to say that they are unsigned or long or long
long:
50U 1234567890L 123456789763222LLU

There are various ways to write weird characters.
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Bitwise operators

In low level programming, it’s often useful to use an int as a collection
of binary bits in which we can store boolean flags (or even several very
small integers).
C provides the following operators for working bit-by-bit on integers:
a & b take the logical AND, bit-by-bit, of a and b

a | b take the logical OR, bit-by-bit, of a and b

a ^ b take the logical XOR, bit-by-bit, of a and b

~b take the logical NOT, bit-by-bit, of b
a << b shift the bits of a left by b places
a >> b shift the bits of a right by b places

unsigned int flags;

enum { FLAG1 = 1, FLAG2 = 1 << 1, FLAG3 = 1 << 2, FLAG4 = 1 << 3 };

flags |= FLAG3; /* set the FLAG3 bit of flags */

flags &= ^FLAG2; /* clear the FLAG2 bit of flags */

if ( flags & FLAG4 ) ... /* test the FLAG4 bit of flags */
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Conditional and comma operators

The conditional expression a ? b : c means ‘if a, then value of b, else
value of c’.
Widely used to save typing, e.g.:
printf(isVowel(x) ? "V" : "C");

instead of

if ( isVowel(x) ) {

printf("V");

} else {

printf("C");

}

The comma expression a, b means evaluate a, then return value of b.
(In my experience) mostly used by mistake! For example: (1,2,3,4,5)

is legal C, but just evaluates to 5, and is not an array or list.
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static

The keyword static has two completely different meanings.
With functions and global variables, it means ‘not externally visible at link
time’:

int global_option; /* can be used with

extern int global_option;

by other compiled modules */

static int module_option; /* only visible in this .c file */

With local variables, static means ‘this variable is created just once and
re-used by every call to this function’:

int counter(void) {

static int count = 0;

return ++count;

}

returns the number of times it has been called.
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do ... while

The do ... while construct is a while-loop that has the test at the end
instead of the beginning. So it always executes at least once. Occasionally
convenient if the test needs something computed by the loop body to
make sense.

char c;

do {

printf("Answer y or n: ");

scanf(" %c",&c);

} while ( ! ( c == 'y' || c == 'n' ) );
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break and continue

We have seen break in the switch statement.
break can be used to terminate the current while or for loop early.
Typical usage:
while ( usual condition ) {

if ( something unusual ) {

printf("something odd happened, can't continue");

break;

}

normal processing
}

continue skips to the end of the loop and then goes round again (doing
the increment in a for loop). Sometimes used to skip the rest of the loop
after doing an easy case.
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goto

Academic courses try not to admit it, but C does have goto. I’ve used it
once or twice. Typical usage to break out of multiply nested loops:
int blurgle(void) {

while ( ... ) {
...
while ( ... ) {
...
if ( catastrophe ) {

printf("Aaarrgh!\n");
goto clean_and_return;

}
...

}
}

clean_and_return:
clean up memory etc.
return ret;

}

Some consider this
the only accept-
able use of goto.
Many say there
is NO acceptable
use.
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Union types

A union looks like a struct, but puts all the members in the same place.
Used for making ‘umbrella types’ which can hold any of several other
types.

typedef struct triangle { ... } triangle_t;

typedef struct circle { ... } circle_t;

typedef union shape {

triangle_t tri;

circle_t cir;

} shape_t;

shape_t s;

Now s can hold a triangle s.tri or a circle s.cir (but not both at the
same time).
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Preprocessor macros

We’ve seen #define for defining compile-time constants.
We can also define macros, which are like compile-time functions applied
to your program: the body code is textually substituted for the macro.

#define max(a,b) (a > b ? a : b)

x = max(42,y*3);

the actual code seen by the compiler is

x = (42 > y*3 ? 42 : y*3);

People used to do this to avoid expensive function calls, but there are
better ways. Nowadays macros are mostly used in conjunction with . . .
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Conditional compilation

The preprocessor has ‘if’ statements, which allow you to change the code
to be compiled according to conditions on preprocessor constants.
Suppose a system header file does
#define Win32

on Windows systems, and not on other systems. Then you can write;
int grobble_in_system(messy_data_t arg) {

#ifdef Win32

horrible code for Windows
#else

sane code for Unix
#endif

}
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Where next?

C is large, but not too large. Learning how to use all the libraries is the
hardest part.
Java is very popular. It’s inherited most of C’s basic syntax, but thrown
away the really horrible bits. Java is much cleaner – none of this messing
with pointers, or arrays of chars. It uses the Object Oriented paradigm,
which is a quite a learning hurdle. It’s also slow.
C++ is C with Object Oriented programming bolted on top. It has all
the yuck-factor of C, with all the difficulty of the OO approach. Big
companies like it, as it gives the design power of OO combined with the
speed of C, and it has a huge standard library. I don’t speak it!
Perl is what much of the Web used to be written in. It’s vaguely C-like,
but heavily optimized for everyday text manipulation tasks. Its biggest
problem is how easy it is to have bugs, and how hard it is to find them.
(I use it for the automarkers.)
Python is rather like Perl, but cleaner, and OO. It’s popular at present.
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