
Computer Programming: Skills & Concepts (CP)
Imperative Programming and C

J. Bradfield

19 September 2017

CP Lect 2 – slide 1 – 19 September 2017

Yesterday’s Lecture

I Structure of the CP course
I What is programming?

I Imperative Programming?
I C programming?

I Hello World

I Any questions?

CP Lect 2 – slide 2 – 19 September 2017

Today’s lecture

I Examining the finicky details of hello.c

I Imperative programming.

I Assigning values to variables.

CP Lect 2 – slide 3 – 19 September 2017

The structure of ‘Hello World’

#include <stdlib.h> /* Include Standard Library */

#include <stdio.h> /* Include Input/Output Library */

int main(void) { /* Exactly one ‘main’ function */

printf("Hello, World.\n"); /* Output function printf */

return EXIT_SUCCESS; /* ‘All ok’ signal returned */

}

I Includes headers verbatim into the program text.

I <filename> files are in the system directories (often /usr/include).

I "filename" files are in the current directory.

I <stdio.h> contains the printf function.

I <stdlib.h> contains the definition of EXIT SUCCESS (it is 0).

CP Lect 2 – slide 4 – 19 September 2017

Comments

#include <stdlib.h> /* Include Standard Library */

#include <stdio.h> /* Include Input/Output Library */

int main(void) { /* Exactly one ‘main’ function */

printf("Hello, World.\n"); /* Output function printf */

return EXIT_SUCCESS; /* ‘All ok’ signal returned */

}

I Everything in-between the /* and */ is ignored.

I You should always comment (well) every program that you write.

I Include the author name, and the date.

CP Lect 2 – slide 5 – 19 September 2017

main

#include <stdlib.h> /* Include Standard Library */

#include <stdio.h> /* Include Input/Output Library */

int main(void) { /* Exactly one ‘main’ function */

printf("Hello, World.\n"); /* Output function printf */

return EXIT_SUCCESS; /* ‘All ok’ signal returned */

}

I A function called main.

I (void) In this case main takes no arguments.

I int In this case, main returns an integer.

I main is always the first function to execute.

CP Lect 2 – slide 6 – 19 September 2017

printf

#include <stdlib.h> /* Include Standard Library */

#include <stdio.h> /* Include Input/Output Library */

int main(void) { /* Exactly one ‘main’ function */

printf("Hello, World.\n"); /* Output function printf */

return EXIT_SUCCESS; /* ‘All ok’ signal returned */

}

I printf is a library function.

I It has a manual page:
man 3 printf

I Contrast to man printf (remember the 3...)

I \n = new line.

CP Lect 2 – slide 7 – 19 September 2017

Template for almost every program . . .

/* ‘Template’ for most programs you’ll write */

#include <stdlib.h> /* Include Standard Library */

#include <stdio.h> /* Include Input/Output Library */

int main(void) { /* Exactly one ‘main’ function */

THIS IS WHERE YOUR SPECIFIC CODE WILL GO

return EXIT_SUCCESS; /* ‘All ok’ signal returned */

}

Of course, there will be lots of extra things (the particular code
to execute; some variable declarations; maybe some extra
functions coded up).

CP Lect 2 – slide 8 – 19 September 2017

What is Imperative Programming?

I The original style of programming-languages, and closest to what
actually is done by computers at the “machine-level”.

I In Imperative programming, the expressions of the language are
instructions or commands to the machine to perform some action:

I Often the actions involve a change of state in the environment of the
program (more about this in week 2);

I Or other times we use input or output actions.

I Writing an imperative program is like creating a ‘recipe’:
I The instructions will be carried out one at a time;
I The order of the instructions is important.

CP Lect 2 – slide 9 – 19 September 2017

‘Change of State’

I We can add, multiply, . . . numbers of the int type using operations
in the kernel of our language.

I 2+3
I We could also output values involving these operations

printf("8*8 is %d", 8*8);

I We will also want to work with numbers whose value we don’t know
in advance.

I Use VARIABLES to store numbers.
I Must declare the variables in advance.
I The current values stored in the program variables at any time is the

(current) STATE.
I The state will change as the program commands are executed.

Discussion

I What are the commands of the ‘Hello, World’ program?
I The variables of the ‘Hello, World’ program?
I What does its program environment look like?

CP Lect 2 – slide 10 – 19 September 2017

Squaring a number

Want to read in a number from the user (so value is not known
when writing our program), square the number (multiply by
itself), and print this out.

Need a variable for the number which is unknown.

I Must DECLARE the variable first.
I int x;
I Above is the declaration
I The name of the variable is x

I Will want to ASSIGN a value to the variable.
I x = 100;
I Above is one way to give a variable a value.
I We will want to read the value for x from the user - we will show how

in week 2 (full program for squaring).

Important: In C, the ‘=’ means ‘becomes equal to’, not ‘is
(already) equal to’. Regrettable, but we’re stuck with it.

CP Lect 2 – slide 11 – 19 September 2017

Programming Errors

I Most programs fail to work correctly the first time.

I Tracking down the errors requires time + patience + attention to
detail.

I Skill in debugging is gained from experience (and attention to
detail).

Example of an error:

#include <stdio.h>;

#include <stdlib.h>

.....

zagreb: gcc -Wall hello.c

hello.c:3:19: warning: extra tokens at end of #include directive

CP Lect 2 – slide 12 – 19 September 2017

Common errors

I * instead of /*

I Mis-spelling

I Missing punctuation

I Additional symbols

I Wrong punctuation

I Missing #include

I No main function

I return statement forgotten from a function

I printf written as pritnf

I ("\n") written as (’\n’)

I #include <stdio.h>;

CP Lect 2 – slide 13 – 19 September 2017

Manifestations of an error

I Compiler error messages:
I Fatal mistake – cannot continue.

I Compiler warning messages:
I A mistake was found, the compiler ‘guessed’ what you meant, and

continued.
I Your program may still manage to work! MAYBE ...
I To show all the warnings: gcc -Wall

I Error while running the program:
I ‘Segmentation fault’.
I The wrong result.

CP Lect 2 – slide 14 – 19 September 2017

Labs

First Lab is 10:00 Thursday of week 1 for students in the Thursday Lab;
other students will have Lab on Monday at 15:10 or Tuesday at 12:10.

I The handout for Lab 1 will be available on the webpage soon (will
be announced); and handed out in hardcopy at the lab.

I Details of how to set your DICE password, have been or will be
emailed to you at your University email account. Please check your
email for this information before the first lab (if it’s not in your
email folder, come to your lab anyway).

CP Lect 2 – slide 15 – 19 September 2017

Wrapping Up

I Please email your Personal Tutor immediately and ask them to enrol
you, if have not been registered yet.

I You will not be allocated an Informatics (DICE) account unless you
are formally registered.

Assigned Reading

Kelley and Pohl sections 1.1, 1.2, 1.3, 1.5, 1.6.

CP Lect 2 – slide 16 – 19 September 2017

