
Computer Programming: Skills & Concepts (CP)
Searching and sorting

Ajitha Rajan

Monday 13 November 2017

CP Lect 17 – slide 1 – Monday 13 November 2017



Searching an array

typedef enum {FALSE, TRUE} Bool_t;

Bool_t LinearSearch(int n, int a[], int sKey)

/* Returns TRUE iff (if and only if) sKey is contained in

* the array, i.e., there exists an index i with 0 <= i < n

* such that a[i] == sKey.

*/

{

int i;

for (i = 0; i < n; ++i) {

if (a[i] == sKey) return TRUE;

}

return FALSE;

}

variant:
I Could use return type int with #DEFINE for TRUE, FALSE (see

BinarySearch)
CP Lect 17 – slide 2 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.

How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )
Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?

Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )
Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29

Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )
Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:

Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )
Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:

Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )
Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:

Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )
Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:

Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )
Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )

Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )

Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )
Find the mid-point: 17 > 13, so narrow to right half:

Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it. . . )
Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.

CP Lect 17 – slide 3 – Monday 13 November 2017



Binary search

int BinarySearch(int n, int a[], int sKey)

/* Assumes: elements of array a are in ascending order.

* Returns TRUE iff sKey is contained in the array, i.e.,

* there exists an index i with 0 <= i < n and a[i] == sKey.

*/

{

/* Precondition: (n > 0)

AND a[0] <= a[1] <= ... <= a[n-1] */

int i, j, m;

/* i will be the start of the sub-array

* we’re currently chopping;

* j will be the end of it (its last element);

* m will be the mid-point of it.

*/

i = 0;

j = n - 1;
CP Lect 17 – slide 4 – Monday 13 November 2017



/* Invariant just before (re-)entering loop: i <= j AND

* if sKey is in a[0:n-1] then sKey is in a[i:j] */

while (i < j) {

m = (i + j)/2;

if (sKey <= a[m]) {

j = m;

}

else {

i = m + 1;

}

}

/* After exiting loop:

* (i >= j), by i, j updates, means (i == j).

* now EITHER a[i] == sKey OR sKey is not in a[0:n-1] */

return a[i] == sKey;

}

I Note how we return true/false . . .

CP Lect 17 – slide 5 – Monday 13 November 2017



Running time

The (worst-case) running time of a function (or algorithm) is defined to be
the maximum number of steps that might be performed by the program
as a function of the input size.

I For functions which take an array (of some basic type) as the input,
the length of the array (n in lots of our examples) is usually taken to
represent size.

I The running time of Linear Search proportional to n (i.e., around
c · n for some constant c), and the running time of Binary Search is
proportional to lg(n).

CP Lect 17 – slide 6 – Monday 13 November 2017



Measuring running time on a machine

#include <time.h>

Bool_t flag = FALSE;

int a[24000000];

clock_t start, stop;

double t;

...

start = clock();

flag = LinearSearch(a, 24000000, -5);

stop = clock();

t = ((double)(stop-start))/CLOCKS_PER_SEC;

printf("Time spent by Linear Search was %lf seconds.\n", t);

...

On my laptop:

Time spent by LinearSearch was 0.069064 seconds.

Time spent by BinarySearch was 0.000001 seconds.

CP Lect 17 – slide 7 – Monday 13 November 2017



Measuring running time on a machine

#include <time.h>

Bool_t flag = FALSE;

int a[24000000];

clock_t start, stop;

double t;

...

start = clock();

flag = LinearSearch(a, 24000000, -5);

stop = clock();

t = ((double)(stop-start))/CLOCKS_PER_SEC;

printf("Time spent by Linear Search was %lf seconds.\n", t);

...

On my laptop:

Time spent by LinearSearch was 0.069064 seconds.

Time spent by BinarySearch was 0.000001 seconds.

CP Lect 17 – slide 7 – Monday 13 November 2017



Sorting

Given an array of integers (or any comparable type), re-arrange the array
so that the items appear in increasing order.

CP Lect 17 – slide 8 – Monday 13 November 2017



Bubble sort

‘Pseudo-code’

for (i = n - 1; i >= 1; i--) {

/* Rearrange the contents of

* array elements a[0], ..., a[i],

* so that the largest value appears

* in element a[i].

*/

}

‘Method’:

I Find the largest item, and move it to the end;

I repeat for 2nd largest item, and so on . . .

CP Lect 17 – slide 9 – Monday 13 November 2017



Bubble sort

‘Pseudo-code’

for (i = n - 1; i >= 1; i--) {

/* Rearrange the contents of

* array elements a[0], ..., a[i],

* so that the largest value appears

* in element a[i].

*/

}

‘Method’:

I Find the largest item, and move it to the end;

I repeat for 2nd largest item, and so on . . .

CP Lect 17 – slide 9 – Monday 13 November 2017



Bubble sort (cont’d)

The task of rearranging the contents of array elements a[0], a[1],

. . . , a[i] so that the largest value appears in element a[i], may be
handled by the following simple loop:

for (j = 0; j < i; j++) {

if (a[j] > a[j+1]) {

swap(&a[j], &a[j+1]);

}

}

(The largest value supposedly ‘bubbles’ up the array into its appropriate
position.)

CP Lect 17 – slide 10 – Monday 13 November 2017



Bubble sort code

/* Sorts a[0], a[1], ..., a[n-1] into ascending order. */

void BubbleSort(int a[], int n) {

int i, j;

for (i = n - 1; i >= 1; i--) {

/* Invariant: The values in locations to the right of

* a[i] are in their correct resting places: they are

* the (n - i - 1)-largest elements arranged in

* positions (i+1), ..., (n-1), in non-descending order. */

for (j = 0; j < i; j++) {

if (a[j] > a[j+1]) {

swap(&a[j], &a[j+1]);

}

}

}

}

The swap function used above is the (correct) one from lab 5.

CP Lect 17 – slide 11 – Monday 13 November 2017



Running time of Bubble Sort

The (worst case) running time of Bubble Sort is proportional to n2. why?

There are better sorting algorithms . . . for example MergeSort or HeapSort
run in time proportional to n lg(n).

For general purpose sorting, often use QuickSort, which runs in time
around n lg n in most cases, though in bad cases (which?) it can take n2.
Standard C systems provide QuickSort as qsort. Occasionally you might
know that BubbleSort would be quicker in your application, and want to
program it. Anything else is probably specialist.

More about Bubble-Sort can be found in Section 6.7 of ‘A Book on C’.

CP Lect 17 – slide 12 – Monday 13 November 2017



Understanding your loops

These slides are logically small and green: for the mathematically and logically
inclined only!

I How can you show that a program is correct?

I One way is to show that certain statements are true at all times in
the program (invariants)

I In particular, to understand a complex while/for-loop, it’s useful
to know what remains true every time you go through it.

I For functions (or other blocks of code) we have preconditions
(things assumed be true before) and postconditions (things which
will be true afterwards given the preconditions).

We’ll do a simple example now; then look (in your own time) at the
comments in the searching and sorting code, and try to understand what
they’re saying about invariants.

CP Lect 17 – slide 13 – Monday 13 November 2017



Power of a number

int Power(int n, int k)

/* Pre-condition: k >= 0. */

/* On-exit: returns n^k (n raised to the power k). */

{

int p = 1, i = k;

/* Invariant before (re-)entering:

* i >= 0 AND p * n^i == n^k */

while (i > 0) {

p *= n;

--i;

}

/* After exiting loop: i <= 0 AND p = n^k */

return p;

}

Warning: n^k in the comments is maths notation, not C notation. In
C, the ^ symbol is the bitwise exclusive-or operator, something entirely
different! CP Lect 17 – slide 14 – Monday 13 November 2017



Example: n = 3, k = 4. The answer should be 34 = 81.
The computation progresses as follows. Initially, i = k and p = 1. Note
that p × ni is invariant!

/* Invariant before (re-)entering:

i >= 0 AND p * n^i == n^k */

while (i > 0) {

p *= n;

--i;

}

/* After exiting loop: i <= 0 AND p = n^k */

return p;

i p p × ni

Initial 4 1 1 × 34 = 81

Iteration 1 3 3 3 × 33 = 81

Iteration 2 2 9 9 × 32 = 81

Iteration 3 1 27 27 × 31 = 81

Iteration 4 0 81 81 × 30 = 81
CP Lect 17 – slide 15 – Monday 13 November 2017



Reading material

Sections of ‘A Book on C’ that are relevant are:

I A good idea to refresh your memory of arrays (early sections of
Chapter 6).

I Section 6.7 has a discussion of BubbleSort.

CP Lect 17 – slide 16 – Monday 13 November 2017


