Searching an array

```
typedef enum {FALSE, TRUE} Bool_t;

Bool_t LinearSearch(int n, int a[], int sKey)
/* Returns TRUE iff (if and only if) sKey is contained in
 * the array, i.e., there exists an index i with 0 <= i < n
 * such that a[i] == sKey.
 */
{
    int i;
    for (i = 0; i < n; ++i) {
        if (a[i] == sKey) return TRUE;
    }
    return FALSE;
}
```

variant:
- Could use return type int with #DEFINE for TRUE, FALSE (see BinarySearch)

Binary search

```
Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?
Computers aren’t so clever, so we do a simplified version:
Repeatedly chop the array in half to close in on where the element must
be. E.g., to search for 17 in:
2 3 5 7 11 13 17 19 23 29
Find the mid-point: 17 > 11, so narrow to right half:
Find the mid-point: 17 ≤ 19, so narrow to left half:
Find the mid-point: 17 ≤ 17, so narrow to left half:
(yes, we could stop here because we’ve found it . . . )
Find the mid-point: 17 > 13, so narrow to right half:
Now we’re left with an array of size 1, so either its element is 17 and
we’ve found it, or 17 isn’t there.
```

```
int BinarySearch(int n, int a[], int sKey)
/* Assumes: elements of array a are in ascending order.
 * Returns TRUE iff sKey is contained in the array, i.e.,
 * there exists an index i with 0 <= i < n and a[i] == sKey.
 */
{
    /* Precondition: (n > 0)
        AND a[0] <= a[1] <= ... <= a[n-1] */
    int i, j, m;
    /* i will be the start of the sub-array
        * we’re currently chopping;
        * j will be the end of it (its last element);
        * m will be the mid-point of it.
        */
    i = 0;
    j = n - 1;
    ```
/* Invariant just before (re-)entering loop: i <= j AND
 * if sKey is in a[0:n-1] then sKey is in a[i:j] */
while (i < j) {
 m = (i + j)/2;
 if (sKey <= a[m]) {
 j = m;
 } else {
 i = m + 1;
 }
}
/* After exiting loop:
 * (i >= j), by i, j updates, means (i == j).
 * now EITHER a[i] == sKey OR sKey is not in a[0:n-1] */
return a[i] == sKey;

Note how we return true/false ...

Running time
The (worst-case) running time of a function (or algorithm) is defined to be
the maximum number of steps that might be performed by the program
as a function of the input size.

- For functions which take an array (of some basic type) as the input,
 the length of the array (n in lots of our examples) is usually taken to
 represent size.
- The running time of Linear Search proportional to \(n \) (i.e., around
 \(c \cdot n \) for some constant \(c \)), and the running time of Binary Search is
 proportional to \(\log(n) \).

Measuring running time on a machine

```c
#include <time.h>
Bool_t flag = FALSE;
int a[24000000];
clock_t start, stop;
double t;
...
start = clock();
flag = LinearSearch(a, 24000000, -5);
stop = clock();
t = ((double)(stop-start))/CLOCKS_PER_SEC;
printf("Time spent by Linear Search was %lf seconds.\n", t);
...
On my laptop:
Time spent by Linear Search was 0.069064 seconds.
Time spent by BinarySearch was 0.000001 seconds.
```

Sorting
Given an array of integers (or any comparable type), re-arrange the array
so that the items appear in increasing order.
Bubble sort

'Pseudo-code'

```c
for (i = n - 1; i >= 1; i--) {
    /* Rearrange the contents of
    * array elements a[0], ..., a[i],
    * so that the largest value appears
    * in element a[i].
    */
}
```

'Method':
- Find the largest item, and move it to the end;
- repeat for 2nd largest item, and so on . . .

Bubble sort (cont’d)

The task of rearranging the contents of array elements a[0], a[1], ..., a[i] so that the largest value appears in element a[i], may be handled by the following simple loop:

```c
for (j = 0; j < i; j++) {
    if (a[j] > a[j+1]) {
        swap(&a[j], &a[j+1]);
    }
}
```

(The largest value supposedly 'bubbles' up the array into its appropriate position.)

Bubble sort code

```c
/* Sorts a[0], a[1], ..., a[n-1] into ascending order. */
void BubbleSort(int a[], int n) {
    int i, j;
    for (i = n - 1; i >= 1; i--) {
        /* Invariant: The values in locations to the right of
        * a[i] are in their correct resting places: they are
        * the (n - i - 1)-largest elements arranged in
        * positions (i+1), ..., (n-1), in non-descending order
        */
        for (j = 0; j < i; j++) {
            if (a[j] > a[j+1]) {
                swap(&a[j], &a[j+1]);
            }
        }
    }
}
```

The swap function used above is the (correct) one from lab 5.

Running time of Bubble Sort

The (worst case) running time of Bubble Sort is proportional to n^2. why?

There are better sorting algorithms ... for example MergeSort or HeapSort run in time proportional to $n \lg(n)$.

For general purpose sorting, often use QuickSort, which runs in time around $n \lg n$ in most cases, though in bad cases (which?) it can take n^2. Standard C systems provide QuickSort as qsort. Occasionally you might know that BubbleSort would be quicker in your application, and want to program it. Anything else is probably specialist.

More about Bubble-Sort can be found in Section 6.7 of 'A Book on C'.
Understanding your loops

These slides are logically small and green: for the mathematically and logically inclined only!

▶ How can you show that a program is correct?
▶ One way is to show that certain statements are true at all times in the program (invariants)
▶ In particular, to understand a complex while/for-loop, it’s useful to know what remains true every time you go through it.
▶ For functions (or other blocks of code) we have preconditions (things assumed be true before) and postconditions (things which will be true afterwards given the preconditions).

We’ll do a simple example now; then look (in your own time) at the comments in the searching and sorting code, and try to understand what they’re saying about invariants.

Power of a number

```c
int Power(int n, int k)
/* Pre-condition: k >= 0. */
/* On-exit: returns n^k (n raised to the power k). */
{
    int p = 1, i = k;
    /* Invariant before (re-)entering:
       * i >= 0 AND p * n^i == n^k */
    while (i > 0) {
        p *= n;
        --i;
    }
    /* After exiting loop: i <= 0 AND p = n^k */
    return p;
}
```

Warning: n^k in the comments is maths notation, not C notation. In C, the ^ symbol is the bitwise exclusive-or operator, something entirely different!

Example: n = 3, k = 4. The answer should be 3^4 = 81.

The computation progresses as follows. Initially, i = k and p = 1. Note that p * n^i is invariant!

```c
/* Invariant before (re-)entering:
   * i >= 0 AND p * n^i == n^k */
while (i > 0) {
    p *= n;
    --i;
}
/* After exiting loop: i <= 0 AND p = n^k */
return p;
```

<table>
<thead>
<tr>
<th>i</th>
<th>p</th>
<th>p × n^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>4</td>
<td>1 × 3^4 = 81</td>
</tr>
<tr>
<td>Iteration 1</td>
<td>3</td>
<td>3 × 3^3 = 81</td>
</tr>
<tr>
<td>Iteration 2</td>
<td>2</td>
<td>9 × 3^2 = 81</td>
</tr>
<tr>
<td>Iteration 3</td>
<td>1</td>
<td>27 × 3^1 = 81</td>
</tr>
<tr>
<td>Iteration 4</td>
<td>0</td>
<td>81 × 3^0 = 81</td>
</tr>
</tbody>
</table>

Reading material

Sections of ‘A Book on C’ that are relevant are:

▶ A good idea to refresh your memory of arrays (early sections of Chapter 6).
▶ Section 6.7 has a discussion of BubbleSort.