
Computer Programming: Skills & Concepts (CP)
Structured data: typedef, struct, enum

Ajitha Rajan

Monday 6 November 2017

CP Lect 15 – slide 1 – Monday 6 November 2017

Last lecture

I Strings

CP Lect 15 – slide 2 – Monday 6 November 2017

Today and tomorrow

I typedef – for very simple type definitions.

I struct – for interesting type definitions.

I enum – for set types.

I switch/case statement.

CP Lect 15 – slide 3 – Monday 6 November 2017

Basic data types in C

int char float double

Really that’s all . . .
except for variations such as signed char, unsigned char, short, . . .

I These are the basic options we have for variables.

I We can apply operators to them, compare them etc * , + , ==, <

etc.

CP Lect 15 – slide 4 – Monday 6 November 2017

typedef – “create your own types”

Create your own types.

I Well, really just rename the standard ones.

I Use the type just like you would the standard one.

I Useful, for example, in physics:
Can create metres, kilograms, seconds, joules etc by typedef-ing
double. (Unfortunately, C will still let you assign seconds to
metres. . .)

CP Lect 15 – slide 5 – Monday 6 November 2017

More ‘complex’ types

Complex numbers.
Consist of a real and an imaginary part.
Special ways of performing algebraic operations.
Need 2 variables to represent each number.

Messy!

CP Lect 15 – slide 6 – Monday 6 November 2017

Adding two complex numbers

/* i3 and r3 are returned as the result */

int add(double i1, double i2, double r1, double r2,

double *r3, double *i3) {

*r3 = r1 + r2 ;

*i3 = i1 + i2 ;

return EXIT_SUCCESS;

}

Yuck.

CP Lect 15 – slide 7 – Monday 6 November 2017

Structured data

Two new data structures. Normally use with typedef.

struct:

I Allows you to group related data into a single type.

I Functions can return a struct and hence return multiple items of
data.

enum:

I Allows you to define a set of data that will be enumerated to an
integer.

Naming convention: common to append ‘_t’ to indicate that the name is
a type. Other conventions also used.

CP Lect 15 – slide 8 – Monday 6 November 2017

A complex number definition

/* Complex number type */

typedef struct {

/* Real and imaginary parts. */

double re, im;

} complex_t;

CP Lect 15 – slide 9 – Monday 6 November 2017

A function to return a complex number

we access the member data with .〈member-name〉

complex_t MakeComplex (double r, double i)

/* Function to create an item of ‘complex number’ type

with real part r, imaginary part i. */

{

complex_t z;

z.re = r;

z.im = i;

return z;

}

CP Lect 15 – slide 10 – Monday 6 November 2017

struct and typedef

With typedef

typedef struct {

...

} complex_t;

complex_t a, b;

Without typedef

struct complex {

...

};

struct complex a, b;

CP Lect 15 – slide 11 – Monday 6 November 2017

Complex number functions

complex_t ComplexSum(complex_t z1, complex_t z2)

/* Returns the sum of z1 and z2 */

{

complex_t z;

z.re = z1.re + z2.re;

z.im = z1.im + z2.im;

return z;

}

int ComplexEq(complex_t z1, complex_t z2)

/* Testing for equality of structs. */

{

return (z1.re == z2.re) && (z1.im == z2.im);

}

CP Lect 15 – slide 12 – Monday 6 November 2017

Multiply and modulus

complex_t ComplexMultiply(complex_t z1, complex_t z2)

/* Returns product of z1 and z2 */

{

complex_t z;

z.re = z1.re*z2.re - z1.im*z2.im;

z.im = z1.re*z2.im + z1.im*z2.re;

return z;

}

double Modulus(complex_t z)

{

return sqrt(z.re*z.re + z.im*z.im);

}

CP Lect 15 – slide 13 – Monday 6 November 2017

An example of using these

int main(void)

{

complex_t z,z1,z2 ;

z1 = MakeComplex(1.0, -5.0);

z2 = MakeComplex(3.0, 2.0);

z = ComplexMultiply(z1, z2);

printf("The modulus of z is %f\n", Modulus(z));

if (ComplexEq(z, MakeComplex(13.0, -13.0))) {

printf("z is equal to 13-13i\n");

} else {

printf("z is not equal to 13-13i\n");

}

return EXIT_SUCCESS;

}

CP Lect 15 – slide 14 – Monday 6 November 2017

Nested structs

A struct can include another struct. This is called nesting.
To access a nested struct member

#include "descartes.h"

typedef struct { point_t points[3]; } triangle_t;

triangle_t tri;

int x_pos = 10;

tri.points[0].x = x_pos;

Because of influences from more modern languages, some would say that
nested access is bad style, and it’s better to write

point_t p0 = tri.points[0];

p0.x = x_pos;

Certainly if you’re going to write tri.points[0] more than once, it pays
to use a variable for it.

CP Lect 15 – slide 15 – Monday 6 November 2017

Passing struct to a function

Structs can be passed as values to functions:
func1(c1) { ...

Since C is call by value, the function cannot change member values in the
original struct.
To pass a struct by call by reference:

Normalize(complex_t *cptr);

.

.

complex_t c1;

Normalize(&c1);

In most uses of structs, they are always passed via pointers.

CP Lect 15 – slide 16 – Monday 6 November 2017

Structs and pointers

To access the elements of *cptr, we have to write (*cptr).re and
(*cptr).im. This rapidly gets boring to type, and is hard to read.
C lets us write cptr->re and cptr->im instead.

void Normalize(complex_t *cptr) {

double mod = Modulus(*cptr);

cptr->re = cptr->re / mod;

cptr->im = cptr->im / mod;

}

Structs often contain not other structs, but pointers to other structs.
Then we get ‘pointer chasing’:
g->players[north]->num_concealed

where g is a pointer to a struct whose players element is an array
of pointers to player structs, and a player struct contains an element
num_concealed

CP Lect 15 – slide 17 – Monday 6 November 2017

Summary (struct)

I typedef allows you to re-name types:
Handy with struct and enum.

I struct allows you to group related data into a single variable:
– Useful for records of multiple items.
– Bank accounts – name, address, balance etc.

I Can treat struct just like any other type:
– return from functions
– Arrays of struct
– Nested structures
– Passing structs to a function.

CP Lect 15 – slide 18 – Monday 6 November 2017

enum

Allows data with integer equivalents to be represented:
– For example months of the year.
– Variables are actually stored as integers.

typedef enum {JAN, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC} month_t ;

typedef struct {

int day;

month_t month;

int year;

} date_t

date_t Today;

Today.day = 8 ; Today.month = NOV ; Today.year = 2004

CP Lect 15 – slide 19 – Monday 6 November 2017

switch/case statement

I A multiple branch selection statement.

I Tests the value of an expression against a list of integers or
character constants.

I Similar to a set of nested if statements:
– Except can only test for equality.
– Neater and more readable.
– Well suited to testing enumerated types
– (not good) need to break out of the switch.

CP Lect 15 – slide 20 – Monday 6 November 2017

switch/case standard usage

switch (〈expression〉) {

case 〈constant-1〉:
〈statement-sequence-1〉;
break;

case 〈constant-2〉: /* constants are integers */

〈statement-sequence-2〉;
break;

case 〈constant-3〉:
.

.

default:

〈statement-sequence〉;
}

CP Lect 15 – slide 21 – Monday 6 November 2017

Function to return the next day
date_t Tomorrow(date_t d) {

switch (d.month) {

case JAN:

if (d.day == 31) {

d.day = 1; d.month++;

} else { d.day++; }

break;

/* Now the other months FEB - NOV */

...

case DEC:

if (d.day == 31) {

d.day = 1; d.month = JAN; d.year++;

} else { d.day++; }

}

return d;

}

CP Lect 15 – slide 22 – Monday 6 November 2017

Combining similar cases
date_t Tomorrow(date_t d) {

switch (d.month) {

case JAN: case MAR: case MAY: case JUL: case AUG: case OCT:

if (d.day == 31) {

d.day = 1; d.month++;

} else { d.day++; }

break;

/* Now the 30 day months, then February */

...

case DEC: /* is special */

if (d.day == 31) {

d.day = 1; d.month = JAN; d.year++;

} else { d.day++; }

}

return d;

}

CP Lect 15 – slide 23 – Monday 6 November 2017

Summary

enum allows representation of information with integer equivalence:

I Months, days etc

I Items in a stock list.

I Buttons on a ’pocket calculator’ application.

switch/case statement:

I Similar to a set of nested if statements

I Useful for processing an enumerated type.

I For example, processing the key pressed in the calculator.

CP Lect 15 – slide 24 – Monday 6 November 2017

