
Computer Programming: Skills & Concepts (CP)
Strings

Ajitha Rajan

Tuesday 31 October 2017

CP–14 – slide 1 – Tuesday 31 October 2017



Last lecture

I Input handling

I char

CP–14 – slide 2 – Tuesday 31 October 2017



Today’s lecture

I Strings

I String I/O.

I String Comparison.

CP–14 – slide 3 – Tuesday 31 October 2017



Strings

A string is any 1-dimensional character array that is terminated by a null
character.

I Null is ’\0’.
I For local use, we declare strings by char *s = "thestring" or

char s[11]

I char *s = "thestring" declares a pointer variable that points to
the first character of the (constant) string;

I whereas char s[11] declares an array of 11 characters.
I Strings are declared in function arguments either as char *s or

char s[].
eg, void foo(char *s) or void foo(char s[])

(meaning . . . a pointer to a char)
I In declaring a string, array length must be 1 greater than the longest

string it will hold, to allow for the null.
eg, char[11] can hold a 10-character string.

CP–14 – slide 4 – Tuesday 31 October 2017



char * and char[]

char *a makes space for a single pointer variable – it makes no space for
the string.
char b[] makes space for the string (but makes no space for a pointer).

If you want a string to read into or modify, use char[].
char b[] = "I can be written into";

char c[256]; // a nice big string to use

If you want a constant string (e.g. for messages), you can use char *.
char *a = "I can’t be written into";

If you want a variable to refer to strings that already exist, use char *.
char *a;

See end of lecture for gory details.

CP–14 – slide 5 – Tuesday 31 October 2017



The string library

I Need to include it at the start:
I #include <string.h>

I To copy a string s2 into s1:
I strcpy(s1,s2); strcpy(s1,"Hello\n");

I To add s2 onto the end of s1:
I strcat(s1,s2)

I Returns the length of s1:
I strlen(s1)

I Many others . . .

CP–14 – slide 6 – Tuesday 31 October 2017



The string library – types

char *strcpy(char *p1, const char *p2);

Returns the pointer p1

char *strcat(char *p1, const char *p2)

likewise

size_t strlen(const char *p1)

size_t is a system-dependent type. On DICE PCs it is an
unsigned long int, i.e. an 8-byte integer.

WARNING: When using strcat or strcpy, it is your responsibility to
make sure p1 has enough space. E.g:

char a[5];

strcpy(a,"This string is too long");

will segfault, or worse, overwrite some other data.

CP–14 – slide 7 – Tuesday 31 October 2017



The string library – types

char *strcpy(char *p1, const char *p2);

Returns the pointer p1

char *strcat(char *p1, const char *p2)

likewise

size_t strlen(const char *p1)

size_t is a system-dependent type. On DICE PCs it is an
unsigned long int, i.e. an 8-byte integer.

WARNING: When using strcat or strcpy, it is your responsibility to
make sure p1 has enough space. E.g:

char a[5];

strcpy(a,"This string is too long");

will segfault, or worse, overwrite some other data.

CP–14 – slide 7 – Tuesday 31 October 2017



String I/O

(don’t need <string.h> for these)

I To printf a string: printf("%s", s1);
I To read in a string:

I scanf("%s", s1); /* ?why no & on s1? */

Write/Read from a string (not I/O stream):
I To print a float a into a string s1:

I sprintf(s1,"hello, num=%f", a);
I sprintf returns an integer, being the number of chars written;
I make sure s1 has space.

I Similarly, we can read ints/floats etc; from a string via sscanf:
I int sscanf(s1, "%d Montgomery St", &door);
I Value returned is the number of variables assigned to.

CP–14 – slide 8 – Tuesday 31 October 2017



What about <, <=, == etc on strings?

int main(void) {

char sone[] = "hiya";

char stwo[] = "cp";

char sthr[] = "coders";

if (sone <= stwo) {

printf("\"hiya\" is less than or equal to \"cp\".\n");

} else {

printf("\"cp\" is less than \"hiya\".\n");

}

if (stwo <= sthr) {

printf("\"cp\" is less than or equal to \"coders\".\n");

} else {

printf("\"coders\" is less than \"cp\".\n");

}

return EXIT_SUCCESS;

}

CP–14 – slide 9 – Tuesday 31 October 2017



<, <=, == don’t work for strings

(sone <= stwo)

I sone and stwo are pointers to char variables (ie, are addresses in
memory).

I comparison is true is and only if address in sone is less than stwo.

Output is unpredictable: compiler is free to allocate memory addresses for
variables

. . . in order of declaration in the program, or maybe

. . . combination of declaration order and string length, or maybe

. . . in reverse order of declaration in program, or even

. . . in lexicographic order of initialization string (if given).

CP–14 – slide 10 – Tuesday 31 October 2017



strcmp

int strcmp(const char *s1, const char *s2);

returns 0 if s1 and s2 are equal,
a negative int if string s1 is lexicographically less than s2

a positive int if string s1 is lexicographically greater than s2

...

if (strcmp(sone, stwo) <= 0) {

printf("\"%s\" is less than or equal to \"%s\".\n", sone, stwo);

} else {

printf("\"%s\" is greater than \"%s\".\n", sone, stwo);

}

CP–14 – slide 11 – Tuesday 31 October 2017



Comparing arrays of other types

A string is a char array. What about comparing arrays of ints or floats?

int memcmp (const void *a1, const void *a2, size_t size);

I memcmp compares the size bytes of memory beginning at a1
against the size bytes of memory beginning at a2.

I Value returned has the same sign as the difference between the first
differing pair of bytes.

I For this reason, only useful for testing equality, not relative order.

What is this void * type? void is a type that nothing can be! But
void * is used as a generic pointer type: a void * can be cast to any
other pointer type.

CP–14 – slide 12 – Tuesday 31 October 2017



strncpy and friends

The requirement to ensure that s1 has enough space in strcpy(s1,s2)

etc. is tedious – have to check length of s2. Frequent cause of ‘buffer
overflows’ and security exposures.
For safety, all professionally written C code uses:
char *strncpy(char *dest, const char *src, size_t n);

which copies at most n characters of src. Example:

/* 50 character strings (excl. null) */

#define LEN 50

char s[LEN+1]; /* add one for the null */

strncpy(s,maybe_long_string,LEN);

s[LEN] = ’\0’; /* make sure there’s a null at the end */

Similarly for strncat, snprintf and so on.

CP–14 – slide 13 – Tuesday 31 October 2017



char * and char[]

What’s the difference between

char *a = "foo1";

char b[] = "foo2";

a is a variable, holding a pointer to the first character of "foo1".
You can assign to it: a = "bar";

b is a pointer to the first character of "foo2".
You can’t assign to it. b = "bar"; is a compile-time error.

Can you modify the contents of the string?

strcpy(b,"bar"); is ok, because b is an array of characters.
strcpy(a,"bar"); fails at run-time, because a is a pointer to (the first
character of) the literal string "foo1", and (reasonably enough) you can’t
change a literal string!
(But a = b; strcpy(a,"bar"); is fine.)

CP–14 – slide 14 – Tuesday 31 October 2017



char * and char[]

What’s the difference between

char *a = "foo1";

char b[] = "foo2";

a is a variable, holding a pointer to the first character of "foo1".
You can assign to it: a = "bar";

b is a pointer to the first character of "foo2".
You can’t assign to it. b = "bar"; is a compile-time error.

Can you modify the contents of the string?
strcpy(b,"bar"); is ok, because b is an array of characters.
strcpy(a,"bar"); fails at run-time, because a is a pointer to (the first
character of) the literal string "foo1", and (reasonably enough) you can’t
change a literal string!
(But a = b; strcpy(a,"bar"); is fine.)

CP–14 – slide 14 – Tuesday 31 October 2017



char * and char[]

char *a = "foo1";

a char *

memory

−→ 'f' 'o' 'o' '1' '\0'

in the program code

char b[] = "foo2";

b

coded
−→ 'f' 'o' 'o' '2' '\0'

allocated memory

In fact, char b[] = "foo2"; is effectively a convenient abbreviation for

char b[sizeof("foo2")];

strcpy(b,"foo2");

and b is an abbreviation for &b[0], the address of the first of the allocated
character cells.

CP–14 – slide 15 – Tuesday 31 October 2017



Assigned Reading (Kelley and Pohl)

For Strings: §6.10, §6.11, Appendix A.14

CP–14 – slide 16 – Tuesday 31 October 2017


