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CP Lab 6: Arrays and some strings

Instructions

The purpose of this Lab is to help you get more programming experience with C. We will do some extra
work with arrays and iteration (or loops) in this lab. We will also introduce you to programming with
strings.

This lab sheet is a bit shorter than the previous two, to give those of you who still need it a bit more
time. If you’re caught up, then go back to the optional exercises from the catch-up week.

All Labs for CP will take place on the DICE machines in AT5.05 (Thursday and Tuesday) or AT6.06
(Monday). For working alone, you may use any of the DICE labs in AT, as long as they are not booked
out by a class. You have 24-hour access to AT levels 3,4,5: if your card/pin does not allow you in, use
the ITO contact form on our course webpage to contact the ITO.

Aims

• Get you extra experience with the DICE system, and its use for C programming.

• Get some extra practice with arrays and iteration.

• Write a program to calculate the first 100 prime numbers and store them in increasing order in an
array.

• Write a ‘string manipulation’ program making use of the basic concepts of assignment to vari-
ables, input, output and the if-statement, switch-case and some predefined string functions.

• if you have extra time: Implement and test the new version of whatday.c which we demonstrated
in Lecture 9.

Getting started

• Log into one of the DICE machines, bring up a Terminal window, move to your home directory,
and create a new subdirectory called lab6. You may want to copy the template.c file from your
lab2 subdirectory into the lab6 directory.

• If you have not completed Stage A of Lab sheet 5 yet, you may devote some of today’s lab session
to that. (Leave the rest of Lab 5 until you’re fully caught up – Labs 6 and 7 are more important.)

• If you do not finish Lab sheet 6 today, please spend time over the week to catch up.
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Stage A Reversing an array

In Lecture 9, and in lab sheet 5, we considered the task of defining a function called Rotate which ac-
cepted as input an integer array and another parameter carrying the length of that array, and performed
a circular rotation of the array by one-position right.

In this first stage of the lab, we will consider the task of designing an function to reverse an array. The
function you will design should have the following function prototype:

void Reverse (int a[], int n)

Your function should accept a pointer (to the starting address of an integer array) as input, as well as an
integer representing the number of cells of that array, and reverse the entire array in memory.

The best starting point for this task is the earlier program rotate.c (containing the function Rotate)
which we saw in lecture 9, and tested in last week’s lab.

The only difference with the Reverse function is that for Reverse, the desired order we want is differ-
ent. If we consider the defined array of rotate.c:

int primes[10] = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29;

then the order we would expect after calling Reverse(primes, 10) would be

29, 23, 19, 17, 13, 11, 7, 5, 3, 2.

You should start your program either by copying over the usual template.c, or even rotate.c from
last week’s lab.

Your result for reverse.c

Program should be correct. To test it, you can use the segment of code you developed for testing
Rotate in last week’s lab. You can then determine whether you get correct outputs.

Make sure you rename a.out into a file reverse (or similar) before proceeding with the next
stage of this lab.

Call the lecturer or demonstrator over if you need help.

Submit your program with
submit cp lab6 reverse.c



Computer Programming (CP) Lab 6, 2017/18 3

Stage B String Manipulation Program

Now we are going to write a string manipulation program. Your program should be named stringMan.c.
You will use the if-statement and/or switch-case construct (you have yet to meet switch-case in
lectures, but you’re welcome to look it up and use it if you wish). This program will have the following
capabilities:

(i) It will implement a function called function1 which reverses the given string. This function
should match the function prototype:

void function1(char* str)

(ii) It will also implement a function called function2 which takes as input parameters a string str
and two characters drop and sub, and replaces occurrences of the drop character in str with sub.
Function prototype should be:

void function2(char* str, char drop, char sub)

(iii) Your program will also implement a function function3 which returns 1 if the given string is a
palindrome, and 0 otherwise.

A string is said to be a palindrome if it is a word (or phrase, or number) that reads the same when
reversed.

The function should match the prototype

int function3(char* str)

For each of the three functions, you will be passing it a string from main, and this string will already
have its own storage (as an array of char) in main. For working with these strings . . .

• You should assume some fixed maximum length for strings and always declare this amount of
space (an array with this many char entries) for any string you work with in main.

The usual way to do this (in traditional C) is to do

#define MAXLEN 100

and then define all your character arrays like

/* the +1 leaves space for the terminating null character */
char mystring[MAXLEN+1];

• Then when you are passed a string as input to a function . . .

You can assume that that pointer has the fixed number of char for you to work with.

Also, because we pass with pointers, all changes you make to the passed string are being made
directly to the string that main gave you.

• The final thing to remember is that all strings should be terminated with '\0' character, and that’s
how we recognise the end of string.

• For each of the functions, you will need to have a for-loop (or maybe a while-loop) to iterate
through the string (which is after all, an array of char).

Apart from writing these three functions, you will also need to write a main function to scan in strings
from the user (using scanf) and ask the user which function they want to test this time.

For your main, you will need to take care of certain things:
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• I expect you may want to use the strlen function in at least some of your functions. Also for
function3 you might want to use strcmp.

If you are going to make use of either of these functions, make sure to add the following #include
at the top of your program.

#include <string.h>

• You will need to declare an array of char of some appropriate length to store strings entered by
the user, as described above (and in lecture 14).

• You will need to use printf to ask the user their choice of the functions (1,2 or 3) to use this
time, and then use scanf to read in this value.

• Regardless of whether the user chose 1, 2, or 3, we will always need to read in an initial string.
Use scanf with the %s option to read in the user’s string into the pre-declared array of char in
main.

• What happens next depends on whether the user asked for option 1, 2 or 3.

Important: If you are in the Tuesday lab you will have already met the switch-case statement
in this morning’s lecture. In that case, use a switch-case statement to carry out the appropriate
option depending on what option the user chose. For the people in the Thursday/Monday lab, it’s
up to you – use if, or if you want to check out switch yourself, go ahead.

– For option 1, you need a call to function1, passing the string as the parameter to function1.

After the function terminates, use a printf with %s to display the reversed string.

– For option 2, we will use function2. This means we will need to take in some extra input
from the user.

* Use a printf to ask for the character which will be dropped, and then a scanf with %c
to read in this char.

Important: We can use scanf("%c",...) to read a single character from the user.
However, the first character we read will not be the one we’re looking for, but will be
the ‘newline’ character left over from when the user hit

�

after typing their input string.

So we need to use the pattern " %c" (with a ‘space" in front of the %c) to ‘skip over’ the
carriage-return which is still in the input buffer. (A space in a scanf format string tells
it to skip over any number of whitespace characters: spaces, newlines, tabs.)

* Use a printf to ask for the character which will be substituted in, and then a scanf
with %c to read in this char.

Important: Same issue with scanf as just above.

* After we have all our inputs, we make a call to function2, passing the entered string,
followed by the two char values.

* After the call terminates, we will use a printf with %s to print out the new value of the
string.

– For option 3, we will use function3

* We call function3, passing the string as the parameter, and assigning the result of the
call into an integer variable.

* Depending on whether the value returned by function3 is 1 or 0, use printf to either
print palindrome or not a palindrome.
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After you have written the program, please compile it using

gcc -Wall stringMan.c

�

Your result for stringMan.c

Program should be correct. To test:

– For the choice 1 and the string university the output should be ytisrevinu.

– For the choice 2, the string london, and the characters o (to replace) and a (to substitute),
the output should be landan.

– For the choice 3, if the input is madam the result should be palindrome.

– For the choice 3, if the input is history the result should be not a palindrome.

Submit your program with
submit cp lab6 stringMan.c

Stage C First 100 primes – a ‘challenge’ problem

Finally we are going to write a simple program to calculate the first 100 primes, and store them in
increasing order in an array. No functions for this question, we just do everything in main.

Remember the definition of a prime number:

A prime number is any integer strictly greater than 1, which can only be divided by itself and 1.

So the first prime is 2, the next 3, then next 5, and so on.

You are going to write your program in a files called primes.c. Apart from the basic structure of
template.c, the main thing we need from the outset, is to define an array of length 100 for the primes
inside the main function:

...
int main(void) {

int primes[100];

...
}

Your program should use a main loop or outside loop in which one iteration adds a new prime (into
primes[i], say) before updating i:

• A for-loop may be suitable for this outside loop;

• However, in finding the ‘next prime’ we will:

– Possibly will need to consider more than one possibility for the ‘next prime’ (since some test
numbers n will turn out to not be primes at all).

– Definitely, in testing for primality, will need to test many potential divisors (remember we
can test whether k divides n by seeing whether the expression n%k has value 0) of n
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– The two observations above mean that we will need an internal loop as well as the outside
one; the internal loop does the checking to find the ‘next prime’

– Depending on how you write your code, you might want to have a third loop ‘inside’ the
internal one.

• Think about the different variables you will need to solve this problem.

Apart from the ‘problem solving’ code you should also include a section at the end to ask the user for
an integer at most 100, and return that prime.

• A nice thing to do during the debugging stage is just to have one printf to output the first five
cell values of the primes array. This will allow you to see mistakes in the early stages of testing.

For this task, ‘program planning’ before coding, will be helpful. There is quite a bit of problem solving
involved.

Your result for primes.c

Program should be correct. To test it, you will need a segment of code at the end where you ask
the user for a integer k, and tell them what the kth prime is (if k<=100).

The k-th prime will be in primes[k-1] (if you have carried out the task properly).

The answers you should get are:

– For k=2, should return 3;

– For k=4, should return 7;

– For k=10, should return 29;

– For k=100, should return 541.

Make sure you rename a.out into a file primes (or similar) before proceeding with the second
stage.

Submit your program with
submit cp lab6 primes.c
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