
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

COMPUTER PROGRAMMING SKILLS AND CONCEPTS

Monday 13 th August 2012

09:30 to 12:30

Convener: J Bradfield
External Examiner: A Preece

INSTRUCTIONS TO CANDIDATES

1. Answer all questions.

2. Consult the separate printed sheet of instructions for details of how to get
the files for the exam and submit your answers.

3. Sections A and B each account for half the marks.

4. Questions in section A are all worth 10 marks, but are not necessarily of
equal difficulty. You are advised to answer them in order.

5. The two questions in section B are of approximately equal difficulty.

Section A

This section contains five short questions worth 10 marks each, in which you
are asked to implement either one function of a program, or a short complete
program. Little credit will be given for incomplete solutions.

1. You are given a file imperial.c containing a skeleton program. Complete the
main function to produce a program that converts grams (Metric system) into
pounds and ounces (the Imperial system). To do the conversion, use the facts
that 1 pound equals 454 grams and a pound is subdivided into 16 ounces.

Ensure that in computing the number of ounces, you should round to the closest
number – ie any fraction equal to or more than 0.5 should add 1 to the number
of ounces; otherwise it should be discarded.

Here are some example results for testing:

Enter number of grams: 42

This equals 0 pounds and 1 ounces.

Enter number of grams: 43

This equals 0 pounds and 2 ounces.

Enter number of grams: 900

This equals 2 pounds and 0 ounces.

You do not need to handle erroneous input.

Note: If you use the function
double round(double x)

from math.h, you must remember to compile with the math library:
gcc imperial.c -lm

You may alternatively implement rounding yourself. [10 marks]

When you are ready, submit the file imperial.c

Page 1 of 7

2. You are given the file power.c, which contains the following function prototype:

double power(double x, int n)

Your task is to implement this function so that it accepts a real number x, and
an integer n, and returns the value xn.

You cannot use pow or any other functions from the math.h library.

You must give the solution for negative integers n as well as positive. You may
assume x is non-zero. (x−n is defined to be 1/xn, and x0 = 1.)

Here are two example results

2.000000 to the power of 5 is 32.000000.

4.000000 to the power of -3 is 0.015625.
[10 marks]

When you are ready, submit the file power.c

3. Academic staff at the University of Edinburgh have the titles Lecturer, Senior
Lecturer, Reader, or Professor. In processions at events such as graduations, the
order of precedence is defined thus: “the Professors in order of appointment as
professor, then the Readers in order of appointment as reader, then the Lecturers
and Senior Lecturers in order of appointment as lecturer”. That is, a professor
appointed in 2005 precedes one appointed in 2006, and all professors precede any
reader, and so on; but a lecturer appointed in 2005 precedes a senior lecturer who
joined the university in 2006.

In the file procession.c, you will find enums and structs representing the rank
and appointment date of members of staff. Complete the code for the function

int precedes(staff s1, staff s2)

so that it returns 1 if s1 precedes s2, -1 if s2 precedes s1, and 0 if they have the
same precedence. [10 marks]

When you are ready, submit the file procession.c

4. In the template file rotate.c, you can see the function prototype:

void rotate(int nums[], int n)

together with some main code to allow the user to enter numbers from standard
input, which are then saved in an array local to main.

Implement the rotate function so that it rotates the first n items of the array
nums by one position to the right. [10 marks]

When you are ready, submit the file rotate.c

Page 2 of 7

5. The perceived brightness p (in suitable units) to the human eye of light of a
given wavelength λ (measured in nanometres) can be crudely approximated by
p = pb + pg + pr, where

pb is 1 − |λ−445|
100

for 345 < λ < 545 and zero otherwise;

pg is 1 − |λ−535|
150

for 385 < λ < 685 and zero otherwise;

pr is 1 − |λ−575|
125

for 450 < λ < 700 and zero otherwise.
(|x| is the absolute value of x, i.e. x if x > 0, and −x if x < 0. The math.h

function fabs(), of type double fabs(double x), gives the absolute value of a
floating point value.)

Write a program brightness.c which reads in a wavelength and prints out the
perceived brightness to three decimal places, as in the following examples:

Enter wavelength: 400

Brightness: 0.650

Enter wavelength: 535

Brightness: 1.780

Enter wavelength: 600

Brightness: 1.367

You do not need to handle erroneous input.

Note: Remember that when using functions from math.h, you must compile
with the math library:
gcc brightness.c -lm

as well as have #include <math.h> in your program. [10 marks]

When you are ready, submit the file brightness.c

Page 3 of 7

Section B

This section contains two longer questions worth 25 marks each. The questions
have several parts. Each part of the question is marked independently of any
errors in previous parts.

1. In this question, we consider the problem of maintaining a database of half-
marathon runners. We will support certain operations: finding the runner with
the fastest time, adding a new runner to the database, using the results of a
recent half-marathon to update a runner’s entry, etc.

The starting point for this question is the file running.c, which contains a suite
of type declarations, as well as the function prototypes for this question (and the
code for some helper functions). The first type declaration is a structured type
runtime t to store running results in hours, minutes and seconds. runner t is an-
other structured type containing the fields name, runid (unique id of the runner,
guaranteed to be a positive integer), and two fields pb (personal best) and recent

(most recent) of type runtime t. The structured type runclub t consists of an
array of size MAXRUNNERS of type runner t, together with a field total which we
will use to maintain a count of the current number of runners in the running club.

typedef struct {

int hr;

int min;

int sec;

} runtime_t;

typedef struct {

char name[30];

int runid;

runtime_t pb;

runtime_t recent;

} runner_t;

typedef struct {

int total;

runner_t runners[MAXRUNNERS];

} runclub_t;

typedef struct {

char name[30];

int runid;

runtime_t result;

} result_t;

Page 4 of 7

There is one extra structured type called result t which is similar to runner t

except that it only contains one field for a running time. result t is intended
to be used when we are giving updates of recent races, or adding a new runner
to the database.

In the file running.c, we have declared one global variable of type runclub t

named slowAC, and this will be the database which all our functions refer to.
We assume that if there are k runners in the database, that slowAC.total will
have the value k, and the runners will be stored at indices 0, . . . , k − 1 of the
slowAC.runners array.

(a) Your first task is to implement a function which takes a single parameter
of type runtime t, and computes the minutes-per-mile pace represented by
this half-marathon time. You should use the fact that a half-marathon is
13.1 miles. The function prototype that you must complete is:

double minpermile(runtime_t time)
[5 marks]

(b) The second task is to implement a function which takes no input arguments,
but which returns the unique runner id (the value of the runid field) of the
runner who has the fastest pb field in the global database slowAC. You must
complete the following function prototype:

int fastest() [10 marks]

(c) The final task is to implement a function which takes one argument res of
type result t, and which either uses this input to update the entry of that
runner (if res.runid has an entry in the database) or (if the runner with
id res.runid is currently missing from the database) to add a new runner
entry to the database, and update slowAC.total.

When updating the entry, you must update the recent field; pb should also
be updated if no better time than res.result is previously known.

You must complete the function prototype below:

int updateDB(result_t res)

The value returned of the function should be 1 unless res.runid is a new
runner and the database already has MAXRUNNERS (in which case you should
return 0). [10 marks]

Your code should be entered into running.c. This file contains some helper
functions, including a function to initialize the database with a collection of
runners. There is also a detailed main function which runs a menu allowing
various functions to be tested.

When you are ready, submit the file running.c

Page 5 of 7

2. In this question, you will implement some routines for a simple English–Latin
dictionary.

You are provided with two files, a skeleton program dict.c and a very small
sample dictionary latin.txt. In the first two parts, you will use a tiny three-word
dictionary built in to the program; in the third part, you will read in latin.txt.

The main program reads the dictionary file if one is given on the command line,
and then goes into a loop, reading English words from the user, looking them up,
and printing the Latin translation.

The dictionary is stored in a global array of dictionary entries. The struct
type dictentry t contains three fields: english, a character array of length
MAX LENGTH+1 storing an English word; latin, a character array storing its Latin
translation; decl, an integer giving the declension of the Latin word, a gram-
matical property we will use later.

(a) Your first task is to implement the Lookup() function. This takes a string
representing an English word, and searches through the dictionary array
looking for an entry matching the argument string, and returns the index
of the matching entry, or -1 if none is found. If this is successfully imple-
mented, a sample run of the program will be (where krk: is the command-
line prompt)

krk: ./a.out

Printing out the dictionary.

daughter filia 1

gate porta 1

master dominus 2

Enter English word to look up: gate

Latin translation is: porta

Enter English word to look up: master

Latin translation is: dominus

Enter English word to look up: slave

No translation found!

Enter English word to look up: ^C
[5 marks]

(b) Your second task is to extend the program so that if the initial lookup of
the input word fails, it sees if the word might be the plural of a word in the
dictionary, and if so, returns the corresponding Latin plural form. Add code
to the indicated place to do the following:
If the input word ends in "s", then remove the "s", and look up the resulting
word. If it is not found, do nothing (do not print any additional message).
If it is found, then print a message, as in the example run that follows, and
then print out the plural of the Latin word. The rules for making Latin
plurals are:

Page 6 of 7

• For a declension 1 word, add "e" to the end of the word.

• For a declension 2 word, replace the final "us" by "i".

An example run is:

krk: ./a.out

Printing out the dictionary.

daughter filia 1

gate porta 1

master dominus 2

Enter English word to look up: masters

No translation found!

Found singular master

Latin translation is: domini

Enter English word to look up: gates

No translation found!

Found singular gate

Latin translation is: portae

Enter English word to look up: ^C
[10 marks]

(c) The program can be given an argument, the dictionary file:
./a.out latin.txt

Your final task is to complete the function ReadDict(), which reads the
dictionary file and parses it into the dictionary array. The dictionary file
contains one entry per line, with the English, Latin and declension sepa-
rated by spaces. ReadDict() should parse this file into the array dict[],
returning 1 if it succeeds, and 0 in the event of any error. You should detect
the following errors

• A word in the file is longer than MAX LENGTH;

• There are more than DICT SIZE lines in the file;

• A line does not have the correct format (word, word, integer).

• The declension is not 1 or 2.

You should print an appropriate error message if you detect an error. [10 marks]

Notes: You may wish to use character-by-character processing, or scanf-
processing. Since you are reading from the file dictfile, for character-by-
character processing you should use fgetc(dictfile) to read a character;
for scanf-processing you should use fscanf(dictfile,format,args. . .).

Remember that the newline at the end of each line counts as white space
for scanf; if you are reading character-by-character, you may find the
isspace() function useful.

When you are ready, submit the file dict.c

Page 7 of 7

