Vectorisation

Michael O'Boyle
February, 2011
informátics

Course Structure

- Course work deadline today. New coursework today - see website
- $4 / 5$ lectures on high level restructuring for parallelism and memory
- Dependence Analysis
- Program Transformations
- Automatic vectorisation ch2 and 5 of Allen and Kennedy
- Automatic parallelisation
- Speculative Parallelisation

Lecture Overview

- Vector loops - how to write loops in a vector format
- Loop distribution + statement reordering: basic vectorisation
- Dependence condition for vectorisation: Based on loop level
- Kennedy's Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange: Move vector loops innermost
- Scalar Expansion, Renaming and Node splitting. Overcoming cycles

Vector code

- Use Fortran 90 vector notation to express vectorised loops.
- Triple notation used x (start:finish:step) to represent a vector in x
- Vectorisation depends on loop dependence

> Do $i=1, N$ $x(i)=x(i)+c$

Enddo

No loop carried dependence [0] Vectorisable

$$
\begin{aligned}
& \text { Do } i=1, N \\
& x(i+1)=x(i)+c
\end{aligned}
$$

Enddo
Loop carried dependence [1] Not vectorisable

$$
x(1: N)=x(1: N)+c
$$

Vector code: varying vector length

Vector registers are a fixed size. Need to fit code to registers

$$
\begin{aligned}
& \text { Do } i=1, N \\
& x(i)=x(i)+c
\end{aligned}
$$

Enddo

$$
\begin{aligned}
& \text { Do } i=1, N, s \\
& \text { Do } i i=i, i+s-1 \\
& x(i i)=x(i i)+c \\
& \text { Enddo } \\
& \text { Enddo }
\end{aligned}
$$

Original Strip-mine
Do $\mathrm{i}=1, \mathrm{~N}, \mathrm{~s}$ $x(i: i+s-1)=x(i: i+s-1)+c$
Enddo
Vectorise

Loop Distribution + Statement reordering

Standard approach to isolating statements within a loop for later vectorisation

Do $i=1, N$	$\begin{aligned} & \text { Do } i=1, N \\ & \quad a(i+1)=b(i)+c \end{aligned}$
$a(i+1)=b(i)+c$	Enddo
$d(i)=a(i)+c$	Do $i=1, N$
Enddo	$d(i)=a(i)+c$
	Enddo
$a(2: N+1)=b(1: N)+c$	
$d(1: N)=a(1: N)+e$	

Cyclic dependence prevent distribution and hence vectorisation. Examine techniques to overcome this.

Inner loop vectorisation

```
Do \(i=1, N\)
    Do \(j=1, M\)
        \(a(i+1, j)=a(i, j)+c\)
    Enddo
Enddo
```

Cannot vectorise as dependence $(1,0)$. If outer loop run sequential then can vectorise inner loop with dep (0). Generalises to nested loops.

Do $i=1, N$

$$
a(i+1,1: M)=a(i, 1: M)+c
$$

Enddo

Vectorisation algorithm

- Simple description of Ch2 algorithm. Look at Ch2 for more details
- Form dependence graph
- Strongly Connected Component (SCC) identification (cycles)
- Separate out weakly connected and vectorise using loop distribution and statement reordering
- Strip off outer dependence level (loop will be sequentialised) and repeat

Running Example

$$
\begin{aligned}
& \text { Do } i=1,100 \\
& \text { s1 } x(i)=y(i)+10 \\
& \text { Do } j=1,100 \\
& \text { s2 } \quad b(j)=a(j, n) \\
& \text { Do } k=1,100 \\
& \text { s3 } \quad a(j+1, k)=b(j)+c(j, k) \\
& \text { Enddo } \\
& \text { s4 } y(i+j)=a(j+1, n) \\
& \text { Enddo }
\end{aligned}
$$

Use d notation where d_{x}^{y} is a dependence of type y at loop level x .
Loops numbered from outermost $x=1 \ldots$ Infinity means within a loop, not loop carried. $\mathrm{y}=\mathrm{o}$ output, $\mathrm{y}=-1$ anti else flow.

Loop carried flow dependence from s4 to s1 on y. d_{1}

Running Example with S1 dependences

i 1,100	
s1 $\mathrm{x}(\mathrm{i})=\mathrm{y}(\mathrm{i})+10$,
Do $j=1,100$	${ }_{1}$
s2 b $\left.{ }^{\text {d }} \mathrm{j}\right)=\mathrm{a}(\mathrm{j}, \mathrm{n})$	
Do $k=1,100$	
s3 $\quad a(j+1, k)=b(j)$	$+c(j, k)$
Enddo	
s4 $y(i+j)=a(j+1, n)$	
Enddo	

Loop carried flow dependence from s4 to s1 on y . d_{1}
No other dependences reach s1

Running Example S2 dependences

$\mathrm{b}(\mathrm{j})$ in s2 has two flow dependences with s 3 . Loop carried and loop independent $d_{1} \cdot d_{\mathrm{inf}}$.
Corresponding loop carried anti dep from s3 to s2 d_{1}^{-1}. Finally loop carried output dependence in s2
$a(j+1, k)$ in $s 3$ has a level one and two flow dep with s2. Corresponding loop carried antidep from s2 to s3.

Example S3 dependences

Loop carried and independent flow dependence from $a(j+1, k)$ in s3 to s4 Corresponding loop carried anti-dep from s4. Output dependence

Example S4 dependences

- Trivial loop carried output dependence in s4 at level 1 on write to $y(i+j)$.
- Other dependence with s1 already shown

Putting it all together

- Analysing connected components using Tarjan's algorithm. Two separate groups (s1),(s2,s3,s4).
- Separate out s1 by loop distribution. Statement reordering required here.

Vectorisation algorithm

Apply on outer level vectorise ($\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4,1$).
s1 not part of SC. Loop distribution and statement reordering and vectorised gives

```
    Do i = 1,100
    vectorise ({s2,s3,s4},2)
    Enddo
    Do i = 1,100
s1 x(i) = y(i) +10
    Enddo
```

Apply algorithm at next level stripping of level 1 dependences

Vectorise($\{s 2, s 3, s 4\}, 2)$ level 1 dependences stripped off

- Analysing connected components using Tarjan's algorithm. Two separate groups (s4),(s2,s3).
- Separate out s4 by loop distribution. No Statement reordering required here.

Vectorisation algorithm

Apply on level2 vectorise ($s 1, s 2, s 3,2$).
s4 not part of SCC. Isolated, distributed and vectorised giving

$$
\text { Do } i=1,100
$$

Do $j=1,100$
vectorise(\{s2,s3\},3)
Enddo
s4 $y(i+1: i+100)=a(2: 101, N)$
Enddo
s1 $x(1: 100)=y(1: 100)+10$

- Apply vectorise again striping off next level

Vectorise(\{s2,s3\},3) level $\mathbf{1 , 2}$ dependences stripped off

- Analysing connected components using Tarjan's algorithm. Two separate groups (s2),(s3).
- Separate out by loop distribution. No Statement reordering required here.

Vectorisation algorithm : Final code

```
    Do i = 1,100
    Do j = 1,100
        b(j) = a(j,n)
        a(j+1,1:100) = b(j) +c(j,1:100)
    Enddo
s4 y(i+1:i+100) = a(2:101,N)
    Enddo
s1 }x(1:100)=y(1:100) +1
```

As s2 has no loop of depth 3, distribution leaves a single statement.

- What happened if no vectorisable regions found?
- Try transformations

Loop Interchange: move loop carried dependences outermost

```
Do \(j=1, M\)
    Do \(i=1, N\)
    \(a(i+1, j)=a(i, j)+c\)
Enddo
Enddo
\([0,1]\) even if \(j\) run sequentially, loop carried dep - i not vectorisable.
```

```
Do \(i=1, N\)
```

Do $i=1, N$
Do $j=1, M$
Do $j=1, M$
$a(i+1, j)=a(i, j)+c$
$a(i+1, j)=a(i, j)+c$
Enddo
Enddo
Now [1,0] - inner loop vectorisable

```

\section*{Scalar expansion}
\[
\begin{aligned}
& \text { Do } i=1, N \\
& t=a(i) \\
& a(i)=b(i) \\
& b(i)=t
\end{aligned}
\]


Enddo

Cycle in dependence graph prevents distribution and vectorisation (output not shown)

Try to eliminate anti-dependence with scalar expansion

Anti-dependence removed eliminating cycle
\[
\begin{aligned}
& \text { Do } i=1, N \\
& \text { tt }(i)=a(i) \\
& \mathrm{a}(\mathrm{i})=\mathrm{b}(\mathrm{i}) \\
& \mathrm{b}(\mathrm{i})=\mathrm{tt}(\mathrm{i}) \\
& \text { Enddo } \\
& \mathrm{t}=\mathrm{tt}(\mathrm{~N})
\end{aligned}
\]


Can now be easily distributed and vectorised

\section*{Scalar expansion :may fail with subsequent uses}
\[
\begin{aligned}
& \text { Do } i=1, N \\
& t=t+a(i)+a(i+1) \\
& a(i)=t \\
& \text { Enddo }
\end{aligned}
\]
```

tt (0) =t
Do i $=1, N$
$\mathrm{tt}(\mathrm{i})=\mathrm{tt}(\mathrm{i}-1)+\mathrm{a}(\mathrm{i})+\mathrm{a}(\mathrm{i}+1)$
a(i) $=t t(i)$
Enddo
$\mathrm{t}=\mathrm{tt}(\mathrm{N})$

```
- Whether or not scalar expansion can break cycles depends on whether it is a covering definitions
- A covering definition for a use means that there are subsequent later uses.
- In practise recurrence on the scalar is the biggest problem.

\section*{informatics}

\section*{Scalar Renaming}
- Can be used to eliminate loop independent output and anti-dependences
```

Do i $=1, \mathrm{~N}$
$t=t+a(i)+b(i)$
$c(i)=t+t$
$t=d(i)-b(i)$
$a(i+1)=t * t$

```

Enddo
\[
\begin{aligned}
& \text { Do } i=1, N \\
& t 1=t+a(i)+b(i) \\
& c(i)=t 1+t 1 \\
& t 2=d(i)-b(i) \\
& a(i+1)=t 2 * t 2
\end{aligned}
\]

Enddo
- Scalar expansion, loop distribution and vectorisation now possible

\section*{Node Splitting}
- Scalar expansion and renaming cannot eliminate all cycles
\[
\begin{aligned}
& \text { Do } i=1, N \\
& a(i)=x(i+1)+x(i) \\
& x(i+1)=b(i)+t \\
& \text { Enddo }
\end{aligned}
\]

- Renaming does not break cycle. Critical anti-dependence

\section*{Node Splitting}
- Make copy of node where anti-dep starts
```

Do i =1,N
xx(i) = x(i+1)
a(i) = xx(i) +x (i)
x(i+1)= b(i)+ t
Enddo

```
- Cycle broken. Vectorisable with statement reordering:s0,s2,s1
- NP-C to find minimal critical deps !

\section*{Summary}
- Vector loops
- Loop distribution
- Dependence condition for vectorisation
- Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange
- Scalar Expansion, Renaming and Node splitting
- Used in Media SIMD instructions/ GPUs```

