Program Transformations

Michael O'Boyle

February, 2011

Course Structure

- L1 Introduction and Recap, L2 Course Work
- 4 lectures on high level restructuring for parallelism and memory
- Dependence Analysis
- Program Transformations loop and arrays
- Automatic vectorisation
- Automatic parallelisation

Lecture Overview

- Classification of program transformations loop and array
- Role of dependence
- Loop restructuring changing the number/type of loop
- Iteration reordering reordering the iterations scanned.
- Array transformations data layout transformation
- Simplified presentation. Large number of technicalities. Applicability. Worth.

References

- Loop Distribution with arbitrary control-flow McKinley and Kennedy Supercomputing 1990
- D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler Transformations for High-Performance Computing. ACM Computing Surveys, 26(4), 1994.
- A Framework for Unifying Reordering Transformations (1993) TR
- On the Complexity of Loop Fusion Alain Darte, PACT 1999
- L. Lamport. The parallel execution of do loops. Communications of the ACM, pages 83–93, February 1974.

What is a program transformation

- A program transformation is a rewriting of the program such that it has the same semantics
- More conservatively, all data dependences must be preserved
- Previous lectures looked at IR→IR transformations or assembler
 —assembler
 transformations
- Focus on transformations in the high level source prog. language: source to source transformations
- Why: Only place where memory reference explicit. Key to restructuring for memory behaviour and large scale parallelism.

Classification

Ongoing open question on a correct taxonomy

- Loop
 - Structure reordering. Change number of loops
 - Iteration reordering. Reorder loop traversal
 - Linear models. Express transformation as unimodular matrices.
- Array
 - Index reordering
 - Duality with loops. Global vs Local.
- All transformations have an associated legality test though some a few are always legal.

Loop Restructuring Index Splitting

Always a legal transformation. No test needed

Do i = 1, 50

$$a(101 - i) = a(i)$$

Do i = 1, 100
 $a(101 - i) = a(i)$
Enddo
Do i = 51, 100
 $a(101 - i) = a(i)$
Enddo

A sequential loop with dependence [*] is transformed into two independent parallel loops. Careful selection of split point.

Neither access in each loop refers to same memory location.

All of first loop must execute before second though - why?

Loop Restructuring: Loop Unrolling

Used for exploiting Instruction Level Parallelism

Always legal - take care of epilogue using index splitting

Do i = 1, 100, 3

$$a(i) = i$$

 $a(i+1) = i+1$
Do i = 1, 100
 $a(i+2) = i+2$
Enddo
Enddo
Do i = 100,100
 $a(i) = i$
Enddo

Non-convex iteration space after transformation - steps. Causes difficulties for dependence analysis. Can normalise loop though

Loop Restructuring: Loop Distribution

Do i = 1,10	1 2 3 4 10
a(i) =	$ s1 \bigcirc \bigcirc$
=a(i-1)	
Enddo	$ s2\rangle\rangle\rangle\rangle\rangle\rangle\rangle\rangle$
	1 2 3 4 10
Do $i = 1,10$	$ s1 \bigcirc \bigcirc \bigcirc \bigcirc \cdots \bigcirc $
a(i) =	
Enddo	
Do $i = 1,10$	
=a(i-1)	
Enddo	$1 \sqrt{2} \sqrt{3} \sqrt{4} 10$
	$ s2 \bigcirc \bigcirc \bigcirc \bigcirc \cdots \bigcirc $

Loop Distribution + Statement Reordering

Do i = 1,10	1 2 3 4 10
a(i) =	
=a(i+1)	
Enddo	$\mid s2 \bigcirc $
	1 2 3 4 10
Do i = 1,100	$ s2 \cap \cap \cap \cap $
=a(i+1)	
Enddo	
Do i = 1,10	
a(i) =	
Enddo	$\begin{bmatrix} 1 & \sqrt{2} & \sqrt{3} & \sqrt{4} & 10 \end{bmatrix}$
	$ s1 \bigcirc \bigcirc \bigcirc \bigcirc \bullet \bullet \bullet \bigcirc $

Anti-dependences honoured.

Loop Restructuring: Loop Fusion

Inverse of loop distribution - needs conformant loops

More difficult than distribution. Dependence constrains application.

Used for increasing ILP and improving register use. Also for fork/join based parallelisation.

Loops can be partly fused after pre-distribution

Iteration reordering: Loop interchange

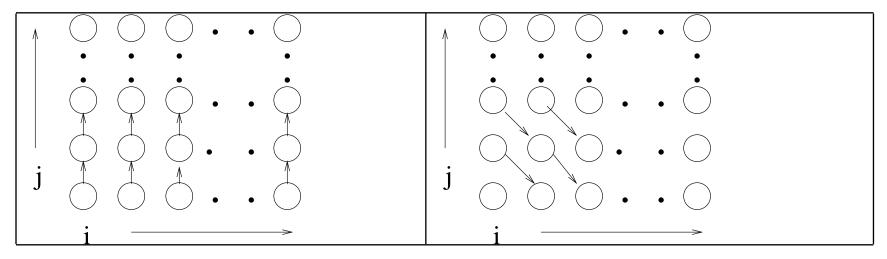
Important widely used transformation

Do i =1, N	Do i =1, N
Do $j = 1,N$	Do $j = 1,N$
a(i,j) = a(i,j-1) +b(i)	a(i,j) = a(i-1,j+1) +b(i)
Enddo	Enddo
Enddo	Enddo
Do j =1, N	
Do $i = 1,N$	
a(i,j) = a(i,j-1) +b(i)	
Enddo	
Enddo	

$$[i,j] \mapsto [j,i]$$

Illegal to interchange [1,-1], ,[<,>] why?

Iteration reordering: Loop interchange



Illegal to interchange [1,-1]: New vector [-1,1]:

Impossible dependence.

Linear models check TD > 0

Loop skewing

Always legal used in wavefront parallelisation

- $[i,j] \mapsto [i,j+i]$
- Equivalent to a change of basis.
- Shifting by a constant referred to as loop bumping

Loop reversal

Do i =1, N
Do j = 1, N

$$a(i,j) = a(i,j-1) + b(i)$$

Enddo
Enddo
Enddo
Do i =N, 1, -1
Do j = 1, N
 $a(i,j) = a(i,j-1) + b(i)$
Enddo
Enddo

- \bullet $[i,j] \mapsto [-i,j]$
- Rarely used in isolation. In unison with previous two.
- Can combine interchange, shewing and reversal as unimodular transformations/ More on this later.

Tiling = strip-mining plus interchange

```
Do i =1, N,s
                                       Do j = 1,N,s
 Do i =1, N
                                        Do ii = i+1, i+s-1
    Do j = 1,N
                                          Do jj = j+1, j+s-1
      a(i,j) = a(i,j) +b(i)
                                           a(ii,jj) = a(ii,jj) + b(ii)
    Enddo
                                          Enddo
  Enddo
                                        Enddo
                                       Enddo
                                     Enddo
Do i =1, N
  Do j = 1,N,s
     Do jj = jj+1, jj+s-1
                                     Strip-mine by factor s Non-convex space
      a(i,jj) = a(i,jj)+b(i)
                                     Interchange placing smaller strip-mine
    Enddo
                                     inside
   Enddo
Enddo
```

Array layout transformations

- Less extensive literature though perhaps have a more significant impact
- Loop transformations affect all memory references within the loop but not elsewhere. Local in nature
- Array and more generally data transformations have global impact but do not affect other references to other arrays.
- Array layout transformations are used to improve memory access performance
- Also form the basis for data distribution based parallelisation schemes for distributed memory machines.

Global index reordering

Dual of loop interchange. Always legal! $[i_i, i_2] \mapsto [i_2, i_1]$

```
REAL A[10,20]
Do i =1, 10
Do j = 1,20
   a(i,j) = a(i+1,j-1) +b(i)
Enddo
Enddo
a(1,2) =0

REAL A[20,10]
Do i =1, 10
Do j = 1,20
   a(j,i) = a(j-1,i+1) +b(i)
Enddo
Enddo
a(2,1) =0
```

- Array declaration and subscripts interchanged globally
- Difficulties occur if array reshaped on procedure boundaries

Linearisation/delinearisation

Dual of loop strip-mining/linearisation

```
REAL a[10,20]
Do i =1, 10
Do j = 1,20
a(i,j) = a(i+1,j-1) +b(i)
Enddo
Enddo
a(1,2) =0
```

Padding

```
REAL A[10,20]
Do i =1, 10
Do j = 1,20
   a(i,j) = a(i+1,j-1) +b(i)
Enddo
Enddo
a(1,2) =0

REAL A[17,20]
Do i =1, 10
Do j = 1,20
   a(i,j) = a(i+1,j-1) +b(i)
Enddo
Enddo
a(1,2) =0
```

- Frequently used to overcome cache conflicts. Very simple
- Pad factor 7 in first index. Normally prime.

Unification

- Presentation simplistic conditions of application can be complex for arbitrary programs.
- Little overall structure.
- Unimodular transformation theory based on linear representation
- Extended to non-singular and the Unified Transformation Framework of Bill Pugh.
- Will return to look in more detail at this formulation in later lectures.

Summary

- Large suite of transformations
- Loop restructuring and reordering
- Legality constraints restrict application
- Array based transformations. Always legal but global impact
- Unifying theories provide structured taxonomy.
- Next lecture: Vectorisation