
Dependence Analysis

Michael O’Boyle

February, 2012

M. O’Boyle Dependence Analysis February, 2012



1

Course Structure

• 5 lectures on high level restructuring for parallelism and memory

• Dependence Analysis

• Program Transformation

• Automatic vectorisation

• Automatic parallelisation

• Speculative parallelisation

• Then adaptive compilation

M. O’Boyle Dependence Analysis February, 2012



2

Lecture Overview

• Parallelism

• Types of dependence flow, anti and output

• Distance and direction vectors

• Classification of loop based data dependences

• Dependence tests: gcd, banerjee and Omega

M. O’Boyle Dependence Analysis February, 2012



3

References

• R. Allen and K Kennedy Optimizing compilers for modern architectures: A
dependence based approach Morgan Kaufmann 2001. Main reference for this
section of lecture notes

• Michael Wolfe High Performance Compilers for Parallel Computing Addison-
Wesley 1996.

• H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press Frontier Series 1990

• Today : The Omega Test: a fast and practical integer programming algorithm
for dependence analysis Supercomputing 1992

M. O’Boyle Dependence Analysis February, 2012



4

Programming Parallel Computers

• Two extremes: User specifies parallelism and mapping

• Compiler parallelises and maps “dusty deck” sequential codes
- Debatable how far this can go

• A popular approach is to break the transformation process into stages

• Transform to maximise parallelism i.e minimise critical path of program
execution graph

• Map parallelism so as to minimise “significant” machine costs i.e.
communication/ non-local access etc.

M. O’Boyle Dependence Analysis February, 2012



5

Different forms of parallelism

Statement Parallelism Function Parallelism

cobegin

a := b + c

d := e +f

coend

f (a) = if (a <= 1) then return 0

else return f(a-1) + f(a-2)

endif

Operation Parallelism Loop Parallelism

a = (b+c) * (d+e)
Do i = 1 , n

a(i) = b(i)

EndDo

M. O’Boyle Dependence Analysis February, 2012



6

Loop Parallelism / Array Parallelism

Original loop Parallel loop

Do i = 1 , n

a(i) = b(i)

EndDo

Doall i = 1 , n

a(i) = b(i)

EndDo

• All iterations of the iterator i can be performed independently

• Independence implies Parallelism

• We will concentrate on loop parallelism O(n) potential parallelism. Statement
and Operation - O(1).

• Recursive parallelism is rich but very dynamic. Exploited in functional
computational models

M. O’Boyle Dependence Analysis February, 2012



7

Parallelism and Data Dependence

Do i = 1,100

a(i) = b(i) + c(i)

EndDo

. . .
1 2 3 10

Do i = 2,100

a(i) = a(i-1)

+ function_call(i)

EndDo

. . .
1 2 3 10

Completely parallel each iteration is totally independent

Completely serial each iteration depends on the previous iteration

Note: iterations NOT array elements

M. O’Boyle Dependence Analysis February, 2012



8

Data Dependence

• The relationship between reads and writes to memory has critical impact on
parallelism. 3 types of data dependence

Flow(true) Anti Output

a = =a a=

=a a= a=

• Only data flow dependences are true dependences. Anti and output can be
removed by remaining

• Dataflow analysis can be used to defines data dependences on a per block level
for scalars but fails in presence of arrays. Need finer grained analysis

M. O’Boyle Dependence Analysis February, 2012



9

Data Dependence

• In general we need to know if two usages of an array access the same memory
location and what type of dependence

• Helpful as this can be done relatively cheaply for simple programs

• General dependence is intractable - equivalent to Hilbert’s tenth problem

a(f(i)) = a(g(i)) for arbitrary f , g

• Decidable (NP) if f, g linear

M. O’Boyle Dependence Analysis February, 2012



10

Dependence in loops

Do i =1,N

a(f(i)) =

= a(g(i))

EndDo

• Conditions for flow dependence from iteration Iw to Ir

1 ≤ Iw ≤ Ir ≤ N ∧ f(Iw) = g(Ir)

• Conditions for anti dependence from iteration Ir to Iw

1 ≤ Ir < Iw ≤ N ∧ g(Ir) = f(Iw)

• Conditions for output dependence from iteration Iw1 to Iw2

1 ≤ Iw1 < Iw2 ≤ N ∧ f(Iw1) = f(Iw2)

M. O’Boyle Dependence Analysis February, 2012



11

Dependence in loops lexicographical ordering

Do i =1,N

Do j = 1,M

a(f(i,j),g(i,j)) =

= a(h(i,j),k(i,j))

EndDo

EndDo

• Lexicographic order on iteration space: (1, 1) < (1, 2) . . . < (1, N) <
(2, 1) . . . < (N,M)

• Conditions for flow dependence from iteration (I1, J1) to (I2, J2)
(1, 1) < (I1, J1) < (I2, J2) < (N,M)

• ∧f(I1, J1) = h(I2, J2) ∧ g(I1, J1) = k(I2, J2)

M. O’Boyle Dependence Analysis February, 2012



12

Dependence distance and direction: (approx) summarising dependence

Do i =1,N

Do j = 1,M

a(i,j) = a(i-1,j+1) +1

EndDo

EndDo

• Flow dependence {(1, 2) → (2, 1), (1, 3) → (2, 2), (2, 2) → (3, 1)}

• Dependence (Iw, Jw) → (Ir, Jr) : Ir − Iw = 1, Jr − Jw = −1

• Distance vector is [1,-1]. Direction vector [+,-] or [<, >] sign of direction.
Any: [*], 0 [=],Positive [<], Negative [>]

• First non zero vector element cannot be negative - why?

M. O’Boyle Dependence Analysis February, 2012



13

Hiearchical Computing of Dependence Directions in loops.

Do i =1,N

a(f(i)) =

= a(g(i))

EndDo

• Test for any dependence from iteration Iw to Ir: 1 ≤ Iw, Ir ≤ N
∧ f(Iw) = g(Ir)

• Use this test to test any direction[*].

• If solutions add additional constraints:[<] direction: add Iw < Ir,
[=] add Iw = Ir.

• Extend for multi loops, [∗, ∗] then [<, ∗], [=, ∗] etc - hierarchical testing

M. O’Boyle Dependence Analysis February, 2012



14

Classification for simplification : Kennedy approach

Do i =1,N

Do j= 1,N

Do k = 1,N

a(5,I+1,J) = a(N,I,K)+c

EndDo

• Test for each subscript in turn. If any subscript has no dependence - then no
solution

• Subscript in 1st dim contains zero index variables (ZIV)

• Subscript in 2nd dim contains single (I) index variables (SIV)

• Subscript in 3rd dim contains multi (J,K) index variables (MIV)

M. O’Boyle Dependence Analysis February, 2012



15

Separable SIV test

Do i =1,N

Do j= 1,N

Do k = 1,N

x(aI+b,..,..) = x(cI+d,..,..)

EndDo

• If equations for one iterator appear in only one subscript, we can separate it
and solve independently.

• a × Iw + b = c × Ir + d Strong SIV, a = c, so Ir − Iw = (b − d)/a

• If a divides b-d and result is in range of I, then we have the dependence
distance. Weak SIV : a or c =0.

M. O’Boyle Dependence Analysis February, 2012



16

General SIV test or Greatest Common Divisor

Do i =1,N

Do j= 1,N

Do k = 1,N

x(aI+b,..,..) = x(cI+d,..,..)

EndDo

• We have a × Iw + b = c × Ir + d

• If gcd(a,c) does not divide d-b no solution try a=c=2, d=1,b=0

• ELSE ... potentially many solutions.

M. O’Boyle Dependence Analysis February, 2012



17

Banerjee Test

• Basically test for a real solution to a Diophantine equation

• Inaccurate: A real solution does not imply an integer solution

Do i =1,N

x(aI+b,..,..) = x(cI+d,..,..)

EndDo

• Flow constraint: aIw + b = cIr + d or h(Iw, Ir) = aIw − cIr + b − d = 0

• Test if h ever becomes 0 in region implies equality

• Intermediate value theorem if max (h) ≥ 0 and min(h) ≤ 0 then this is true.

M. O’Boyle Dependence Analysis February, 2012



18

Example using flow constraint

Do i =1,100

a(2*i+3) = a(i+7)

• We have 2Iw + 3 = Ir + 7, h = 2Iw − Ir − 4 and 1 ≤ Iw ≤ Ir ≤ 100

• Min h = (2*1 -100 -4) = -102, Max h = (2*100-1-4)=195
195 > 0 > −102 hence solution

• Simple example can be extended. Technical difficulties with complex iteration
spaces

• Performed sub-script at a time, Used for MIV

M. O’Boyle Dependence Analysis February, 2012



19

Omega Test - Read the paper!

• Most compilers still use classification and special tests for dependence

• However Pugh’s Omega Test can solve exactly using integer linear
programming.

• Basically state constraints and put into a smart Fourier-Motzkin elimination
based solver

• Shown that worst case double exponential cost on manipulating Presburgher
formula is frequently low-end polynomial

M. O’Boyle Dependence Analysis February, 2012



20

Lecture Overview

• Parallelism

• Types of dependence flow, anti and output

• Distance and direction vectors

• Classification of loop based data dependences

• Dependence tests: gcd, banerjee and Omega

• Next lecture loop and data transformations

M. O’Boyle Dependence Analysis February, 2012


