Dependence Analysis

Michael O'Boyle

February, 2012

Dependence Analysis

February, 2012

Course Structure

- 5 lectures on high level restructuring for parallelism and memory
- Dependence Analysis
- Program Transformation
- Automatic vectorisation
- Automatic parallelisation
- Speculative parallelisation
- Then adaptive compilation

School of

Lecture Overview

- Parallelism
- Types of dependence flow, anti and output
- Distance and direction vectors
- Classification of loop based data dependences
- Dependence tests: gcd, banerjee and Omega

References

- R. Allen and K Kennedy Optimizing compilers for modern architectures: A dependence based approach Morgan Kaufmann 2001. Main reference for this section of lecture notes
- Michael Wolfe High Performance Compilers for Parallel Computing Addison-Wesley 1996.
- H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. ACM Press Frontier Series 1990
- Today : The Omega Test: a fast and practical integer programming algorithm for dependence analysis Supercomputing 1992

Programming Parallel Computers

- Two extremes: User specifies parallelism and mapping
- Compiler parallelises and maps "dusty deck" sequential codes
 Debatable how far this can go
- A popular approach is to break the transformation process into stages
- Transform to maximise parallelism i.e minimise critical path of program execution graph
- Map parallelism so as to minimise "significant" machine costs i.e. communication/ non-local access etc.

School of

Different forms of parallelism

Statement Parallelism

Function Parallelism

cobegin
 a := b + c
 d := e +f
coend

f (a) = if (a <= 1) then return 0 else return f(a-1) + f(a-2)endif

Operation Parallelism

a = (b+c) * (d+e)

Do i = 1 , n a(i) = b(i)

EndDo

Loop Parallelism

informatics

5

Loop Parallelism / Array Parallelism

Original loop	Parallel loop	
Do $i = 1$, n a(i) = b(i)	Doall $i = 1$, n a(i) = b(i)	
EndDo	EndDo	

- All iterations of the iterator i can be performed independently
- Independence implies Parallelism
- We will concentrate on loop parallelism O(n) potential parallelism. Statement and Operation O(1).
- Recursive parallelism is rich but very dynamic. Exploited in functional computational models

Parallelism and Data Dependence

Completely parallel each iteration is totally independent Completely serial each iteration depends on the previous iteration Note: iterations NOT array elements School of

Data Dependence

• The relationship between reads and writes to memory has critical impact on parallelism. 3 types of data dependence

Flow(true)	Anti	Output
a =	=a	a=
=a	a=	a=

- Only data flow dependences are true dependences. Anti and output can be removed by remaining
- Dataflow analysis can be used to defines data dependences on a per block level for scalars but fails in presence of arrays. Need finer grained analysis

formation

Data Dependence

- In general we need to know if two usages of an array access the same memory location and what type of dependence
- Helpful as this can be done relatively cheaply for simple programs
- General dependence is intractable equivalent to Hilbert's tenth problem $a(f(i))=a(g(i)) \mbox{ for arbitrary } f,\ g$
- Decidable (NP) if f, g linear

Dependence in loops

Do i =1,N
 a(f(i)) =
 = a(g(i))
EndDo

- Conditions for flow dependence from iteration I_w to I_r $1 \le I_w \le I_r \le N \land f(I_w) = g(I_r)$
- Conditions for anti dependence from iteration I_r to I_w $1 \le I_r < I_w \le N \land g(I_r) = f(I_w)$
- Conditions for output dependence from iteration I_{w1} to I_{w2} $1 \le I_{w1} < I_{w2} \le N \land f(I_{w1}) = f(I_{w2})$

formation

Dependence in loops lexicographical ordering

- Lexicographic order on iteration space: $(1,1) < (1,2) \ldots < (1,N) < (2,1) \ldots < (N,M)$
- Conditions for flow dependence from iteration (I_1, J_1) to (I_2, J_2) $(1,1) < (I_1, J_1) < (I_2, J_2) < (N, M)$
- $\wedge f(I_1, J_1) = h(I_2, J_2) \wedge g(I_1, J_1) = k(I_2, J_2)$

nformatics

12 informatics

Dependence distance and direction: (approx) summarising dependence

- Flow dependence $\{(1,2) \rightarrow (2,1), (1,3) \rightarrow (2,2), (2,2) \rightarrow (3,1)\}$
- Dependence $(I_w, J_w) \rightarrow (I_r, J_r) : I_r I_w = 1, J_r J_w = -1$
- Distance vector is [1,-1]. Direction vector [+,-] or [<,>] sign of direction. Any: [*], 0 [=],Positive [<], Negative [>]
- First non zero vector element cannot be negative why?

- Test for any dependence from iteration I_w to $I_r : 1 \le I_w, I_r \le N$ $\land f(I_w) = g(I_r)$
- Use this test to test any direction[*].
- If solutions add additional constraints:[<] direction: add $I_w < I_r$, [=] add $I_w = I_r$.
- Extend for multi loops, [*,*] then [<,*], [=,*] etc hierarchical testing

nformatics


```
Classification for simplification : Kennedy approach
Do i =1,N
Do j= 1,N
Do k = 1,N
a(5,I+1,J) = a(N,I,K)+c
EndDo
```

- Test for each subscript in turn. If any subscript has no dependence then no solution
- Subscript in 1st dim contains zero index variables (ZIV)
- Subscript in 2nd dim contains single (I) index variables (SIV)
- Subscript in 3rd dim contains multi (J,K) index variables (MIV)

Separable SIV test

```
Do i =1,N
Do j= 1,N
Do k = 1,N
x(aI+b,..,.) = x(cI+d,..,.)
EndDo
```

- If equations for one iterator appear in only one subscript, we can separate it and solve independently.
- $a \times I_w + b = c \times I_r + d$ Strong SIV, a = c, so $I_r I_w = (b d)/a$
- If a divides b-d and result is in range of I, then we have the dependence distance. Weak SIV : a or c =0.

formation

15

General SIV test or Greatest Common Divisor

```
Do i =1,N
Do j= 1,N
Do k = 1,N
x(aI+b,..,.) = x(cI+d,..,.)
EndDo
```

• We have
$$a \times I_w + b = c \times I_r + d$$

- If gcd(a,c) does not divide d-b no solution try a=c=2, d=1,b=0
- ELSE ... potentially many solutions.

nformatics

16

Banerjee Test

- Basically test for a real solution to a Diophantine equation
- Inaccurate: A real solution does not imply an integer solution

- Flow constraint: $aI_w + b = cI_r + d$ or $h(I_w, I_r) = aI_w cI_r + b d = 0$
- Test if h ever becomes 0 in region implies equality
- Intermediate value theorem if max (h) ≥ 0 and min(h) ≤ 0 then this is true.

nformation

Example using flow constraint

- Do i =1,100 a(2*i+3) = a(i+7)
- We have $2I_w + 3 = I_r + 7, h = 2I_w I_r 4$ and $1 \le I_w \le I_r \le 100$
- Min h = (2*1 100 4) = -102, Max h = (2*100 1 4) = 195195 > 0 > -102 hence solution
- Simple example can be extended. Technical difficulties with complex iteration spaces
- Performed sub-script at a time, Used for MIV

formation

Omega Test - Read the paper!

- Most compilers still use classification and special tests for dependence
- However Pugh's Omega Test can solve exactly using integer linear programming.
- Basically state constraints and put into a smart Fourier-Motzkin elimination based solver
- Shown that worst case double exponential cost on manipulating Presburgher formula is frequently low-end polynomial

Lecture Overview

- Parallelism
- Types of dependence flow, anti and output
- Distance and direction vectors
- Classification of loop based data dependences
- Dependence tests: gcd, banerjee and Omega
- Next lecture loop and data transformations