Parallelisation

Michael O’Boyle

February, 2011
Lecture Overview

- Parallelisation for fork/join
- Mapping parallelism to shared memory multi-processors
- Loop distribution and fusion
- Data Partitioning and SPMD parallelism
- Communication, synchronisation and load imbalance.
Approaches to parallelisation

• Two approaches to parallelisation
 – Traditional shared memory. Based on finding parallel loop iterations
 – Distributed memory compilation. Focus on mapping data, computation follows

• Now single address space, physically distributed memory uses a mixture of both.

• Actually, can show equivalence
Loop Parallelisation

• Assume a single address space machine. Each processor sees the same set of addresses. Do not need to know physical location of memory reference.

• Control-orientated approach. Concerned with finding independent iterations of a loop. Then map or schedule these to the processor.

• Aim: find maximum amount of parallelism and minimise synchronisation.

• Secondary aim: improve load imbalance. Inter-processor communication not considered.

• Main memory just part of hierarchy - so use uni-processor approaches.
Loop Parallelisation: Fork/join

- Fork/join assumes that there is a forking of parallel threads at the beginning of a parallel loop

- Each thread executes one or more iterations. Depend on later scheduling policy

- There is a corresponding join or synchronisation at the end

- For this reason loop parallel approaches favour outer loop parallelism

- Can use loop interchange to improve the fork/join overhead.
Loop Parallelisation: Using loop interchange

Do i = 1,N
 Do j = 1,M
 a(i+1,j) = a(i,j) +c
 Enddo
Enddo

Parallel Do j = 1,M
 Do i = 1,N
 a(i+1,j) = a(i,j) +c
 Enddo
Enddo

Do j = 1,M
 Do i = 1,N
 a(i+1,j) = a(i,j) +c
 Enddo
Enddo

Parallel Do j = 1,M
 Do i = 1,N
 a(i+1,j) = a(i,j) +c
 Enddo
Enddo

Interchange has reduced synchronisation overhead from O(N) to 1.
Parallelisation approach

• Loop distribution eliminates carried dependences and creates opportunity for outer-loop parallelism.

• However increases number of synchronisations needed after each distributed loop.

• Maximal distribution often finds components too small for efficient parallelisation

• Solution: fuse together parallelisable loops.
Loop Fusion

• Fusion is illegal if fusing two loops causes the dependence direction to be changed

Do i = 1,N
 a(i) = b(i) +c
Enddo
Do i = 1,N
 d(i) = a(i+1) +e
Enddo

• Profitability: Parallel loops should not generally be merged with sequential loops: Tapered fusion
Data Parallelism

- Alternative approach where we focus on mapping data rather than control flow to the machine.

- Data is partitioned/distributed across the processors of the machine.

- The computation is then mapped to follow the data - typically such that work writes to local data. Local write/owner computes rule.

- All of this is based on the SPMD computational model. Each processor runs one thread executing the same program, operating on the different data.

- This means that loop bounds change from processor to processor.
Data Parallelism: Mapping

• Placement of work and data on processors. Assume parallelism found in a previous stage

• Typically program parallelism $O(n)$ is much greater than machine parallelism $O(p)$, $n >> p$

• We have many options as to how to map a parallel program

• Key issue: What is the best mapping that achieves $O(p)$ parallelism but minimises cost

• Costs include communication, load imbalance and synchronisation
Simple Fortran example

Dimension Integer a(4,8)
Do i = 1, 4
 Do j = 1, 8
 a(i,j) = i + j
 Enddo
Enddo

M. O’Boyle Parallelisation February, 2011
Partitioning by columns of a and hence iterator j: Local writes

Dimension Integer $a(4,1..2)$
Do $i = 1, 4$
 Processor 1
 Do $j = 1, 2$

 $a(i,j) = i + j$
 Enddo
Enddo

...

Dimension Integer $a(4,5..6)$
Do $i = 1, 4$
 Processor 3
 Do $j = 5, 6$

 $a(i,j) = i + j$
 Enddo
Enddo

Enddo

etc..
Partitioning by rows of a and hence iterator i: Local writes

Dimension Integer a(1..1,1..8)
Do i = 1, 1
 Processor 1
 Do j = 1,8
 a(i,j) = i + j
 Enddo
 Enddo

... Dimension Integer a(3..3,1..8)
Do i = 3, 3
 Processor 3
 Do j = 1,8
 a(i,j) = i + j
 Enddo
 Enddo

etc..
Linear Program representation

\[
\begin{align*}
\text{Do } i &= 1, 16 \\
\text{Do } j &= 1, 16 \\
\text{Do } k &= i, 16 \\
\quad c(i, j) &= c(i, j) + a(i, k) \cdot b(j, k)
\end{align*}
\]

\[
\begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
1 & 0 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
i \\
j \\
k
\end{bmatrix}
\leq
\begin{bmatrix}
-1 \\
-1 \\
0 \\
16 \\
16 \\
16
\end{bmatrix}
\]

Polytope $AJ \leq b$. Access matrices $U_c \ U_a \ U_b$

\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}_{c} \begin{bmatrix} i \\ j \\ k \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{a} \begin{bmatrix} i \\ j \\ k \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{a} \begin{bmatrix} i \\ j \\ k \end{bmatrix}
\]

Can we automatically generate code for each processor given that writes must be local?
Partitioning: Ex. 1st index: 4 procs: c(16,16), a(16,16), b(16,16)

\[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
1 & 0 & -1 \\
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0 \\
1 & 0 & 0 \\
\end{array} \]

\[\begin{bmatrix}
i \\
j \\
k \\
\end{bmatrix} \leq \begin{bmatrix}
-1 \\
-1 \\
0 \\
16 \\
16 \\
16 \\
-5 \\
9 \\
\end{bmatrix} \]

Partitioning: Determine local array bounds \(\lambda_z, \upsilon_z \) for each processor \(1 \leq z \leq p \).

\(\lambda_1 = 1, \lambda_2 = 5, \lambda_3 = 9, \lambda_4 = 13 \) \(\upsilon_1 = 4, \upsilon_2 = 8, \upsilon_3 = 12, \upsilon_4 = 16 \)

Determine local write constraint \(\lambda_z \leq U_c \leq \upsilon_z, 5 \leq i \leq 9 \) and add to polytope

Works for arbitrary loop structures and accesses
Load Balance: 4 procs

Do i = 1,16
 Do j = 1,16
 Do k = i,16
 c(i,j) = c(i,j) + a(i,k) * b(j,k)

Assuming c, a, b are to be partitioned in a similar manner

How should we partition to minimise load imbalance?

• Row: 928,672,416,160 per processor, load imbalance: 384

• Column: 544 iterations per processor

Why this variation?
Partition by "invariant" iterator j.

Can be expressed as a polytope condition.
Reducing Communication

We wish to partition work and data to reduce amount of communication or remote accesses

Dimension a(n,n) b(n,n)
Do i = 1,n
 Do j = 1,n
 Do k = 1,n
 a(i,j) = b(i,k)
 Enddo
 Enddo
Enddo

How should we partition to reduce communication?
Reducing Communication: Column Partitioning

Each processor has columns of a and b allocated to it.

Look at access pattern of second processor:

The columns of a scheduled to P2 access all of b $n^2 - \frac{n^2}{p}$ remote access.
Reducing Communication: Row Partitioning

Each processor has rows of a and b allocated to it.

Look at access pattern of second processor.

The rows of a scheduled to P2 access corresponding rows of b.

0 remote accesses.
Alignment

• The first index of a and b have the same subscript \(a(i,j), a(i,k) \)

• They are said to be aligned on this index

• Partitioning on an aligned index makes all accesses local to that array reference

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}_a, \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}_b
\]

Can transform array layout to make arrays more aligned for partitioning.

Find \(A \) such that \(AU_x \) is maximally aligned with \(U_y \)

Global alignment problem
Synchronisation

- Alignment information can also be used to eliminate synchronisation.
- Early work in data parallelisation did not focus on synchronisation.
- The placement of message passing synchronous communication between source and sink would (over!) satisfy the synchronisation requirement.
- When using data parallel on new single address space machines, have to reconsider this.
- Basic idea, place a barrier synchronisation where there is a cross-processor data dependence.
Synchronisation

Do i = 1,16
 a(i) = b(i)
Enddo

Do i = 1,16
 c(i) = a(i)
Enddo

Do i = 1,16
 a(17-i) = b(i)
Enddo

Do i = 1,16
 c(i) = a(i)
Enddo

• Barrier placed between each loop. But are they necessary?

• Data that is written always local. (localwrite rule)

• Data that is aligned on partitioned index is local.

• No need for barriers here
Summary

• VERY brief overview of auto-parallelism

• Parallelisation for fork/join

• Mapping parallelism to shared memory multi-processors

• Data Partitioning and SPMD parallelism

• Multi-core processor are common place

• Sure to be an active area of research for years to come