This lecture:
- Data flow termination
- More data flow examples
- Dominance
- Static single-assignment form
Data flow termination

Fixed Point

A fixed point, \(x \), of function \(f : T \rightarrow T \) is when \(f(x) = x \)

Partial ordering

A binary relation, \(\leq \), among elements of a set, \(S \), that is:

- \(\forall a \in S, \ a \leq a \) \quad \text{reflexive}
- \(\forall a, b \in S, \ a \leq b \land b \leq a \implies a = b \) \quad \text{antisymmetric}
- \(\forall a, b, c \in S \) \(a \leq b \land b \leq c \implies a \leq c \) \quad \text{transitive}

Partially ordered set (poset)

A set with a partial order
Data flow termination

Join semi-lattice

Partially ordered set that has a join (a least upper bound) for any nonempty finite subset

\[
\forall x, y, z \in V
\]

\[
x \land (y \land z) = (x \land y) \land z
\]
AssOCIatativity

\[
x \land y = y \land x
\]
Commutativity

\[
x \land x = x
\]
Idempotency

\[
\top \land x = x
\]
Top element

Note, *meet semi-lattice* has \(\bot\) and *complete lattice* has both

Often just use ‘semi-lattice’
Data flow termination

Lattices

Example lattice

Hasse diagram for the set of all subsets of x, y, z, ordered by inclusion

Is it a lattice?
Data flow termination

Lattices

Example lattice

Hasse diagram for the set of all subsets of \(x, y, z \), ordered by inclusion

Yes, and is lattice for LiveOut, with variables, \(x, y, z \)
Data flow termination
Lattices

Example non-lattices
Data flow termination

Lattices

Example non-lattices

Left: c and d have no common upper bound
Right: b and c have common upper bounds (d, e, f), but no least upper bound

Example non-lattices
Data flow termination

Each block or statement has a particular function, e.g. based on *Kill* and *Gen* sets
Let F be the set of transfer functions

Sufficient termination constraints

- V and \land for a semi-lattice
- F has identity: $l(x) = x, \forall x \in V$
- F is closed under composition: $\forall f, g \in F, h = f \circ g \in F$
- F is monotonic: $\forall f \in F, f(x \land y) \leq f(x) \land f(y)$

See 📖 10.11
A variable v is **live-out** of statement s if v is used along some control path starting at s

Otherwise, we say that v is **dead**

A variable is live if it holds a value that may be needed in the future

Information flows *backwards* from statement to predecessors

Liveness useful for optimisations (e.g. register allocation, store elimination, dead code...)

Liveness
A variable v is live-out of statement s if v is used along some control path starting at s.
A variable v is live-out of statement s if v is used along some control path starting at s.
A variable v is live-out of statement s if v is used along some control path starting at s.
A variable \(v \) is live-out of statement \(s \) if \(v \) is used along some control path starting at \(s \).
A variable v is live-out of statement s if v is used along some control path starting at s.

Diagram:

- $s_1: a := 2$
- $s_2: \text{if } x > 0$
- $s_3: a := x + 1$
- $s_4: b := 0$
- $s_5: c := a * 2$
- $s_6: \text{if } y < x$

- Initial set: $\{x, y\}$
- Live-out set for s_2: $\{x, y, a\}$
- Live-out set for s_3: $\{x, y, a\}$
- Live-out set for s_4: $\{x, y, a\}$
- Live-out set for s_5: $\{x, y\}$
- Live-out set for s_6: $\{\}$
A variable v is live-out of statement s if v is used along some control path starting at s.

Liveness
Liveness

A variable v is live-out of statement s if v is used along some control path starting at s.

Diagram:

1. $s_1: a := 2$
2. $s_2: \text{if } x > 0$
3. $s_3: a := x + 1$
4. $s_4: b := 0$
5. $s_5: c := a \times 2$
6. $s_6: \text{if } y < x$

Notes:
- $\{x, y\}$
- $\{x, y, a\}$
- Note: b, c defined but not used, so s_4, s_5 useless, if removed s_1, s_3 useless
- $\{x, y, a\}$
- $\{x, y, a\}$

A variable v is live-out of statement s if v is used along some control path starting at s.
Liveness

- Live variables come up from their successors using them
 \[\text{Out}(s) = \bigcup_{\forall n \in \text{Succ}(s)} \text{In}(n) \]
- Transfer back across the node
 \[\text{In}(s) = \text{Out}(s) - \text{Kill}(s) \cup \text{Gen}(s) \]
- Used variables are live
 \[\text{Gen}(s) = \{ u \text{ such that } u \text{ is used in } s \} \]
- Defined but not used variables are killed
 \[\text{Kill}(s) = \{ d \text{ such that } d \text{ is defined in } s \text{ but not used in } s \} \]
- If we don’t know, start with empty
 \[\text{Init}(s) = \emptyset \]
Others

- Constant propagation - show variable has same constant value at some point
 - Strictly speaking does not compute expressions except $x := \text{const}$, or $x := y$ and y is constant
 - Often combined with constant folding that computes expressions
- Copy propagation - show variable is copy of other variable
- Available expressions - set of expressions reaching by all paths
- Very busy expressions - expressions evaluated on all paths leaving block - for code hoisting
- Definite assignment - variable always assigned before use
- Redundant expressions, and partial redundant expressions
- Many more - read about them!
Dominators

CFG node \(b_i \) dominates \(b_j \), written \(b_i \gg b_j \), iff every path from the start node to \(b_j \) goes through \(b_i \).

Design data flow equations to compute which nodes dominate each node.

What direction?
What value set?
What transfer?
What Meet?
Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

What direction?
What value set?
What transfer?
What Meet?
Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i

Design data flow equations to compute which nodes dominate each node

Direction: Forward
What value set?
What transfer?
What Meet?
Initial values?
 Dominators

CFG node \(b_i \) dominates \(b_j \), written \(b_i \gg b_j \), iff every path from the start node to \(b_j \) goes through \(b_i \).

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

What value set?

What transfer?

What Meet?

Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

Values: Sets of nodes

What transfer?

What Meet?

Initial values?
CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

Direction: Forward
Values: Sets of nodes
What transfer?
What Meet?
Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node

Direction: Forward

Values: Sets of nodes

Transfer: $\text{Out}(n) = \text{In}(n) \cup \{n\}$

What Meet?

Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i

Design data flow equations to compute which nodes dominate each node

Direction: Forward
Values: Sets of nodes
Transfer: $\text{Out}(n) = \text{In}(n) \cup \{n\}$

What Meet?
Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

Values: Sets of nodes

Transfer: $\text{Out}(n) = \text{In}(n) \cup \{n\}$

Meet: $\text{In}(n) = \bigcap_{s \in \text{Pred}(s)} \text{Out}(s)$

Initial values?
Dominators

CFG node \(b_i \) dominates \(b_j \), written \(b_i \gg b_j \), iff every path from the start node to \(b_j \) goes through \(b_i \).

Design data flow equations to compute which nodes dominate each node

Direction: Forward

Values: Sets of nodes

Transfer: \(\text{Out}(n) = \text{In}(n) \cup \{n\} \)

Meet: \(\text{In}(n) = \bigcap_{\forall n \in \text{Pred}(s)} \text{Out}(s) \)

Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i

Design data flow equations to compute which nodes dominate each node

Direction: Forward

Values: Sets of nodes

Transfer: $Out(n) = In(n) \cup \{n\}$

Meet: $\forall n \in Pred(s) \cap Out(s)$

Initial: $Init(n_0) = \{n_0\}; Init(n) = all$
Dominators

Post-dominator

Node z is said to post-dominate a node n if all paths to the exit node of the graph starting at n must go through z.

Strict dominance

Node a strictly dominates b iff $a \gg b \land a \neq b$.

Immediate dominator

$idom(n)$ strictly dominates n but not any other node that strictly dominates n.

Dominator tree

Tree where node’s children are those it immediately dominates.

Dominance frontier

$DF(n)$ is set of nodes, d s.t. n dominates an immediate predecessor of d, but n does not strictly dominate d.
Dominators

Example: Dominator tree

Where are dominance frontiers?
Dominators

Example: Dominator tree

\[DF(b_5) = \{b_3\} \]
Dominators

Example: Dominator tree

\[DF(b_1) = \{b_1\} \]
Static single-assignment form (SSA)

- Often allowing variable redefinition complicates analysis
- In SSA:
 - One variable per definition
 - Each use refers to one definition
 - Definitions merge with ϕ functions
 - Φ functions execute instantaneously in parallel
- Used by or simplifies many analyses
Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Original CFG
Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Rename multiple definitions of same variable
Example: Intuitive conversion to SSA

Repeatedly merge definitions with ϕ
Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Now in SSA form
Static single-assignment form (SSA)

Types of SSA

- **Maximal SSA** - Places ϕ node for variable x at every join block if block uses or defines x

- **Minimal SSA** - Places ϕ node for variable x at every join block with 2+ reaching definitions of x

- **Semipruned SSA** - Eliminates ϕs not live across block boundaries

- **Pruned SSA** - Adds liveness test to avoid ϕs of dead definitions
Static single-assignment form (SSA)
Conversion to SSA sketch2

- For each definition1 of x in block b, add ϕ for x in each block in $DF(b)$
- This introduces more definitions, so repeat
- Rename variables
- Can be done in $T(n) = O(n)$, if liveness cheap

1Different liveness tests (including none) here change SSA type
2See \textit{EaC} 9.3.1-9.3.4
Static single-assignment form (SSA)
Conversion from SSA sketch\(^3\)

- Cannot just remove \(\phi\) nodes; optimisations make this unsafe
- Place copy operations on incoming edges
- Split edges if necessary
- Delete \(\phi\)s
- Remove redundant copies afterwards

\(^3\)See EaC 9.3.5
Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

Original SSA CFG
Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

Place copies
Static single-assignment form (SSA)

Conversion from SSA

Example: Intuitive conversion from SSA

```
a_1 := 2
a_3 := a_1
if x > 0
  a_2 := x + 1
  a_4 := a_2
else
  a_3 := \phi(a_1, a_4)
  b := 0
  a_4 := a_3
a_4 := \phi(a_2, a_3)
  c := a_4 * 2
if y < x
  a_3 := a_4
```

Split where necessary
Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

Remove ϕs
Static single-assignment form (SSA)

Extensions

- Dataflow assumes that all paths in the CFG are taken hence conservative approximations
 - Guarded SSA attempts to overcome this by having additional meet nodes γ, η and μ to carry conditional information around
 - Array based SSA models access patterns\(^4\)
- Inter-procedural challenging. Pointers destroy analysis! Large research effort in points-to analysis.

\(^4\)Can be generalised using Presburger formula
Three possible values per variable

<table>
<thead>
<tr>
<th></th>
<th>Not a constant</th>
<th>Constant value (k)</th>
<th>Not computed (maybe never)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(k)</td>
<td>(\bot)</td>
<td>(x)</td>
</tr>
</tbody>
</table>

Meet is \(T \land x = x \), \(\bot \land x = \bot \), \(c \land c = c \), \(c \land d = \bot \) if \(c \neq d \)

Transfer functions compute value if all inputs are constant
Summary

- Data flow termination
- More data flow examples
- Dominance
- Static single-assignment form
The biggest revolution in the technological landscape for fifty years

Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk

• 4-year programme: MSc by Research + PhD

• Research-focused: Work on your thesis topic from the start

• Collaboration between:
 ▶ University of Edinburgh’s School of Informatics
 ✴ Ranked top in the UK by 2014 REF
 ▶ Edinburgh Parallel Computing Centre
 ✴ UK’s largest supercomputing centre

• Research topics in software, hardware, theory and application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

• Full funding available

• Industrial engagement programme includes internships at leading companies

The biggest revolution in the technological landscape for fifty years

Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk