Compiler Optimisation
4 – Dataflow Analysis

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2019
Introduction

This lecture:
- Data flow termination
- More data flow examples
- Dominance
- Static single-assignment form
Data flow termination

Fixed Point
A fixed point, x, of function $f : T \rightarrow T$ is when $f(x) = x$

Partial ordering
A binary relation, \leq, among elements of a set, S, that is:

- $\forall a \in S, \quad a \leq a$ \hspace{1cm} \text{reflexive}$
- $\forall a, b \in S, \quad a \leq b \land b \leq a \implies a = b$ \hspace{1cm} \text{antisymmetric}$
- $\forall a, b, c \in S \quad a \leq b \land b \leq c \implies a \leq c$ \hspace{1cm} \text{transitive}$

Partially ordered set (poset)
A set with a partial order
Data flow termination

Join semi-lattice

Partially ordered set that has a join (a least upper bound) for any nonempty finite subset

\[\forall x, y, z \in V \]
\[x \land (y \land z) = (x \land y) \land z \quad \text{Associativity} \]
\[x \land y = y \land x \quad \text{Commutativity} \]
\[x \land x = x \quad \text{Idempotency} \]
\[\top \land x = x \quad \text{Top element} \]

Note, *meet semi-lattice* has \(\bot \) and *complete lattice* has both

Often just use ‘semi-lattice’
Data flow termination
Lattices

Example lattice

Hasse diagram for the set of all subsets of x, y, z, ordered by inclusion
Is it a lattice?
Data flow termination

Lattices

Example lattice

Hasse diagram for the set of all subsets of x, y, z, ordered by inclusion

Yes, and is lattice for LiveOut, with variables, x, y, z
Data flow termination

Example non-lattices
Data flow termination
Lattices

Example non-lattices

```
<table>
<thead>
<tr>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>e</td>
</tr>
</tbody>
</table>
```
Data flow termination

Lattices

Example non-lattices
Data flow termination

Each block or statement has a particular function, e.g. based on *Kill* and *Gen* sets.

Let F be the set of transfer functions.

Sufficient termination constraints

- V and \land for a semi-lattice
- F has identity: $I(x) = x, \forall x \in V$
- F is closed under composition: $\forall f, g \in F, h = f \circ g \in F$
- F is monotonic: $\forall f \in F, f(x \land y) \leq f(x) \land f(y)$

See \[\ref{10.11}\]
A variable v is **live-out** of statement s if v is used along some control path starting at s.

Otherwise, we say that v is **dead**.

A variable is live if it holds a value that may be needed in the future.

Information flows *backwards* from statement to predecessors.

Liveness useful for optimisations (e.g. register allocation, store elimination, dead code...).
A variable v is live-out of statement s if v is used along some control path starting at s.

Diagram:

- $s_1: a := 2$
- $s_2: \textbf{if } x > 0$
- $s_3: a := x + 1$
- $s_4: b := 0$
- $s_5: c := a \times 2$
- $s_6: \textbf{if } y < x$

Liveness
A variable \(v \) is live-out of statement \(s \) if \(v \) is used along some control path starting at \(s \).
A variable v is live-out of statement s if v is used along some control path starting at s.

A variable v is live-out of statement s if v is used along some control path starting at s.

Liveness
A variable v is live-out of statement s if v is used along some control path starting at s.
A variable v is live-out of statement s if v is used along some control path starting at s.

```
\[ s_1 \quad a := 2 \]
\[ s_2 \quad \textbf{if } x > 0 \quad \{ x, y, a \} \]
\[ s_3 \quad a := x + 1 \quad \{ x, y \} \]
\[ s_4 \quad b := 0 \]
\[ s_5 \quad c := a \times 2 \quad \{ x, y, a \} \]
\[ s_6 \quad \textbf{if } y < x \quad \{ x, y \} \]
\[ \{ \} \]
```
A variable v is live-out of statement s if v is used along some control path starting at s.

Liveness

$$s_1: a := 2$$

$$s_2: \text{if } x > 0$$

$$s_3: a := x + 1$$

$$s_4: b := 0$$

$$s_5: c := a \times 2$$

$$s_6: \text{if } y < x$$

Note: x, y used but not defined

${x, y}$

${x, y, a}$

${x, y, a}$

${x, y, a}$

${x, y}$

${x, y, a}$

${x, y, a}$

${x, y}$

A variable v is live-out of statement s if v is used along some control path starting at s.

Diagram:

- s_1: $a := 2$
- s_2: if $x > 0$
- s_3: $a := x + 1$
- s_4: $b := 0$
- s_5: $c := a \times 2$
- s_6: if $y < x$
A variable v is live-out of statement s if v is used along some control path starting at s.

Note: b, c defined but not used, so s_4, s_5 useless, if removed s_1, s_3 useless.
Liveness

- Live variables come up from their successors using them
 \[\text{Out}(s) = \bigcup_{n \in \text{Succ}(s)} \text{In}(n) \]
- Transfer back across the node
 \[\text{In}(s) = \text{Out}(s) - \text{Kill}(s) \cup \text{Gen}(s) \]
- Used variables are live
 \[\text{Gen}(s) = \{ u \text{ such that } u \text{ is used in } s \} \]
- Defined but not used variables are killed
 \[\text{Kill}(s) = \{ d \text{ such that } d \text{ is defined in } s \text{ but not used in } s \} \]
- If we don’t know, start with empty
 \[\text{Init}(s) = \emptyset \]
Others

- Constant propagation - show variable has same constant value at some point
 - Strictly speaking does not compute expressions except \(x := \text{const} \), or \(x := y \) and \(y \) is constant
 - Often combined with constant folding that computes expressions
- Copy propagation - show variable is copy of other variable
- Available expressions - set of expressions reaching by all paths
- Very busy expressions - expressions evaluated on all paths leaving block - for code hoisting
- Definite assignment - variable always assigned before use
- Redundant expressions, and partial redundant expressions
- Many more - read about them!
DOMINATORS

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

What direction?
What value set?
What transfer?
What Meet?
Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

What direction?
What value set?
What transfer?
What Meet?
Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \triangleright \triangleright b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

What value set?
What transfer?
What Meet?
Initial values?
Dominators

CFG node \(b_i \) dominates \(b_j \), written \(b_i \gg b_j \), iff every path from the start node to \(b_j \) goes through \(b_i \).

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

What value set?

What transfer?

What Meet?

Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

Values: Sets of nodes

What transfer?
What Meet?
Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

Values: Sets of nodes

What transfer?

What Meet?

Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

Values: Sets of nodes

Transfer: $Out(n) = In(n) \cup \{n\}$

What Meet?

Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

Values: Sets of nodes

Transfer: $\text{Out}(n) = \text{In}(n) \cup \{n\}$

What Meet?
Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i.

Design data flow equations to compute which nodes dominate each node.

Direction: Forward

Values: Sets of nodes

Transfer: $\text{Out}(n) = \text{In}(n) \cup \{n\}$

Meet: $\text{In}(n) = \bigcap_{\forall n \in \text{Pred}(s)} \text{Out}(s)$

Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i

Design data flow equations to compute which nodes dominate each node

Direction: Forward
Values: Sets of nodes
Transfer: $Out(n) = In(n) \cup \{n\}$
Meet: $In(n) = \bigcap_{\forall n \in Pred(s)} Out(s)$

Initial values?
Dominators

CFG node b_i dominates b_j, written $b_i \gg b_j$, iff every path from the start node to b_j goes through b_i

Design data flow equations to compute which nodes dominate each node

Direction: Forward

Values: Sets of nodes

Transfer: $Out(n) = In(n) \cup \{n\}$

Meet: $In(n) = \bigcap_{s \in \text{Pred}(s)} Out(s)$

Initial: $Init(n_0) = \{n_0\}; Init(n) = \text{all}$
Dominators

<table>
<thead>
<tr>
<th>Post-dominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node (z) is said to post-dominate a node (n) if all paths to the exit node of the graph starting at (n) must go through (z)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strict dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node (a) strictly dominates (b) iff (a \gg b \land a \neq b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immediate dominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>(idom(n)) strictly dominates (n) but not any other node that strictly dominates (n)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dominator tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree where node’s children are those it immediately dominates</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dominance frontier</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DF(n)) is set of nodes, (d) s.t. (n) dominates an immediate predecessor of (d), but (n) does not strictly dominate (d)</td>
</tr>
</tbody>
</table>
Dominators

Example: Dominator tree

Where are dominance frontiers?
Dominators

Example: Dominator tree

\[DF(b_5) = \{ b_3 \} \]
Dominators

Example: Dominator tree

\[
\text{DF}(b_1) = \{b_1\}
\]
Static single-assignment form (SSA)

- Often allowing variable redefinition complicates analysis
- In SSA:
 - One variable per definition
 - Each use refers to one definition
 - Definitions merge with ϕ functions
 - Φ functions execute instantaneously in parallel
- Used by or simplifies many analyses
Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Original CFG

- s_1: $a := 2$
- s_2: if $x > 0$
- s_3: $a := x + 1$
- s_4: $b := 0$
- s_6: $c := a * 2$
- s_7: if $y < x$

Diagram
Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Rename multiple definitions of same variable
Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Repeatedly merge definitions with ϕ

But a_4 reaches s_4 and s_6, too

Semantics changed
Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Now in SSA form
Static single-assignment form (SSA)

Types of SSA

- **Maximal SSA** - Places \(\phi \) node for variable \(x \) at every join block if block uses or defines \(x \)
- **Minimal SSA** - Places \(\phi \) node for variable \(x \) at every join block with 2+ reaching definitions of \(x \)
- **Semipruned SSA** - Eliminates \(\phi \)s not live across block boundaries
- **Pruned SSA** - Adds liveness test to avoid \(\phi \)s of dead definitions
Static single-assignment form (SSA)
Conversion to SSA sketch\(^2\)

- For each definition\(^1\) of \(x\) in block \(b\), add \(\phi\) for \(x\) in each block in \(DF(b)\)
- This introduces more definitions, so repeat
- Rename variables
- Can be done in \(T(n) = O(n)\), if liveness cheap

\(^1\)Different liveness tests (including none) here change SSA type
\(^2\)See \(\text{EaC 9.3.1-9.3.4}\)
Static single-assignment form (SSA)
Conversion from SSA sketch\(^3\)

- Cannot just remove \(\phi\) nodes; optimisations make this unsafe
- Place copy operations on incoming edges
- Split edges if necessary
- Delete \(\phi\)s
- Remove redundant copies afterwards

\(^3\)See EaC 9.3.5
Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

Original SSA CFG
Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

Place copies
Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

\[a_1 := 2 \]
\[a_3 := a_1 \]
\[\textbf{if} \ x > 0 \]
\[a_2 := x + 1 \]
\[a_4 := a_2 \]
\[a_3 := \phi(a_1, a_4) \]
\[b := 0 \]
\[a_4 := a_3 \]
\[a_4 := \phi(a_2, a_3) \]
\[c := a_4 \times 2 \]
\[\textbf{if} \ y < x \]
\[a_3 := a_4 \]

Split where necessary
Static single-assignment form (SSA)

Conversion from SSA

Example: Intuitive conversion from SSA

```
\begin{align*}
    & s_1: a_1 := 2 \\
    & s_2: a_3 := a_1 \\
    & s_3: \text{if } x > 0 \\
    & s_4: a_2 := x + 1 \\
    & s_6: a_4 := a_2 \\
    & s_9: c := a_4 \times 2 \\
    & s_A: \text{if } y < x \\
    & s_8: b := 0 \\
    & s_7: a_4 := a_3 \\
    & s_C: a_3 := a_4
\end{align*}
```

Remove ϕs
Static single-assignment form (SSA)

Extensions

- Dataflow assumes that all paths in the CFG are taken hence conservative approximations
 - Guarded SSA attempts to overcome this by having additional meet nodes γ, η and μ to carry conditional information around
 - Array based SSA models access patterns4
- Inter-procedural challenging. Pointers destroy analysis! Large research effort in points-to analysis.

4Can be generalised using Presburger formula
Static single-assignment form (SSA)
Constant propagation

Three possible values per variable

<table>
<thead>
<tr>
<th></th>
<th>Not a constant</th>
<th>Constant value k</th>
<th>Not computed (maybe never)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\top</td>
<td>Not a constant</td>
<td>Constant value k</td>
<td>Not computed (maybe never)</td>
</tr>
</tbody>
</table>

Meet is $\top \land x = x$, $\bot \land x = \bot$, $c \land c = c$, $c \land d = \bot$ if $c \neq d$

Transfer functions compute value if all inputs are constant
Summary

- Data flow termination
- More data flow examples
- Dominance
- Static single-assignment form
The biggest revolution in the technological landscape for fifty years

Now accepting applications!
Find out more and apply at:
pervasiveparallelism.inf.ed.ac.uk

• 4-year programme: MSc by Research + PhD

• Research-focused: Work on your thesis topic from the start

• Collaboration between:
 ▶ University of Edinburgh’s School of Informatics
 ✴ Ranked top in the UK by 2014 REF
 ▶ Edinburgh Parallel Computing Centre
 ✴ UK’s largest supercomputing centre

• Research topics in software, hardware, theory and application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

• Full funding available

• Industrial engagement programme includes internships at leading companies

The biggest revolution in the technological landscape for fifty years

Now accepting applications!
Find out more and apply at:
pervasiveparallelism.inf.ed.ac.uk