Compiler Optimisation
4-from-ssa – Conversion from SSA (addendum)

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2019
Introduction

Things to watch out for when converting from SSA.

- Effect of optimisation
- Critical edges
- Lost copy problem
- Swap problem
Effect of Optimisation

Optimisations can prevent conversion by just merging variables

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = x + y</td>
</tr>
<tr>
<td>b = x + y</td>
</tr>
<tr>
<td>a = 17</td>
</tr>
<tr>
<td>c = x + y</td>
</tr>
</tbody>
</table>

Just a basic block
Effect of Optimisation

Optimisations can prevent conversion by just merging variables

Example

\[
\begin{align*}
 a_0 &= x_0 + y_0 \\
 b_0 &= x_0 + y_0 \\
 a_1 &= 17 \\
 c_0 &= x_0 + y_0
\end{align*}
\]

Convert to SSA.
Note that \(b_0 \) and \(c_0 \) are copies of \(a_0 \)
Effect of Optimisation

Optimisations can prevent conversion by just merging variables.

Example

\[a_0 = x_0 + y_0\]
\[b_0 = a_0\]
\[a_1 = 17\]
\[c_0 = a_0\]

Optimise the redundant expressions. What will happen if we merge variables now?
Effect of Optimisation

Optimisations can prevent conversion by just merging variables

Example

\[a = x + y \]

\[b = a \]

\[a = 17 \]

\[c = a \]

If we merge \(a_0 \) and \(a_1 \) back into \(a \), then \(c \) gets the wrong value

So, keep variables, use copies in predecessors of \(\phi \) nodes\(^1\)

\(^1\)As in lecture-3.
Critical Edges

Copies on predecessors difficult with *critical edges*.

Critical Edge
A CFG edge whose destination has multiple predecessors and whose source has multiple successors.

Example

Source has multiple successors: a copy in the source means all of its successors get the copy. If the copy is live into them then potential semantics change.
Destination has multiple predecessors: If there was only one, we could put the copy in the destination and probably wouldn’t need the phi node anyway.
Lost copy problem

- Most SSA algorithms split critical edges
- Next example shows necessary splitting to prevent lost copy
Lost copy problem

Example

\[i = 1 \]
\[y = i \]
\[i = i + 1 \]
\[z = y + \ldots \]

A simple loop

Convert to SSA
Lost copy problem

Example

\[i_0 = 1 \]
\[i_1 = \phi(i_0, i_2) \]
\[y_0 = i_1 \]
\[i_2 = i_1 + 1 \]
\[z_0 = y_0 + \ldots \]

Converted to SSA

\[y_0 \text{ now redundant} \]

Optimisation: Replace uses with \(i_1 \) and remove definition
Lost copy problem

Example

\begin{align*}
i_0 &= 1 \\
i_1 &= \varphi(i_0, i_2) \\
i_2 &= i_1 + 1 \\
z_0 &= i_1 + \ldots
\end{align*}

\begin{itemize}
\item y_0 removed
\item Try to convert from SSA
\item Place copies without splitting
\end{itemize}
Lost copy problem

Example

\[i_0 = 1 \]
\[i_1 = i_0 \]
\[i_1 = \varphi(i_0, i_2) \]
\[i_2 = i_1 + 1 \]
\[i_1 = i_2 \]

Copies placed

Now remove \(\varphi \)
Lost copy problem

Example

\begin{align*}
i_0 &= 1 \\
i_1 &= i_0 \\
i_2 &= i_1 + 1 \\
i_1 &= i_2 \\
z_0 &= i_1 + \ldots
\end{align*}

Note: Back edge is \textbf{critical} and i_1 is live in to loop exit

Does z_0 use the same version of i_1 as before the copy?

\textit{Instead, split loop’s back edge}
Lost copy problem

Example

\[i_0 = 1 \]
\[i_1 = i_0 \]
\[i_2 = i_1 + 1 \]
\[i_1 = i_2 \]
\[z_0 = i_1 + \ldots \]

Edge split keeps semantics

Extra jump can be expensive inside hot loops

Instead, use temporaries to remember correct values
Lost copy problem

Example

\[i_0 = 1 \]
\[i_1 = i_0 \]
\[i_2 = i_1 + 1 \]
\[t = i_1 \]
\[i_1 = i_2 \]

Extra temporary in place

\[z_0 = t + \ldots \]
Swap problem

- ϕ nodes execute simultaneously in parallel
 - i.e. All read their operands at once, before any assignments
- Copies do not
 - Naive conversion with copies can cause incorrect behaviour

Example

<table>
<thead>
<tr>
<th>Simultaneous phis, swap values</th>
<th>Naive copy, swap lost2</th>
<th>Temporary inserted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = \phi(x_0, y_1)$</td>
<td>$x_1 = y_1$</td>
<td>$t = x_1$</td>
</tr>
<tr>
<td>$y_1 = \phi(y_0, x_1)$</td>
<td>$y_1 = x_1$</td>
<td>$y_1 = t$</td>
</tr>
</tbody>
</table>

2Assume $x_1 = x_0, y_1 = y_0$ placed in another block.
The biggest revolution in the technological landscape for fifty years

Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk

4-year programme:
MSc by Research + PhD

Research-focused:
Work on your thesis topic from the start

Collaboration between:
- University of Edinburgh’s School of Informatics
 - Ranked top in the UK by 2014 REF
- Edinburgh Parallel Computing Centre
 - UK’s largest supercomputing centre

Research topics in software, hardware, theory and application of:
- Parallelism
- Concurrency
- Distribution

Full funding available

Industrial engagement programme includes internships at leading companies

The University of Edinburgh Informatics
EPSRC Centre for Doctoral Training in Pervasive Parallelism