Compiler Optimisation
3 – Dataflow Analysis

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2018
Optimisations often split into

- **Analysis:** Calculate some values at points in program
- **Transformation:** Improve the program where analysis allows

Data flow analyses are common class of analyses

Data pushed around control flow graph simulating effect of statements

This lecture introduces:

- Reaching definitions analysis in detail
- Algorithms to compute data flow
Definition of variable x at program point d reaches point u if there exists a control-flow path p from d to u such that no definition of x appears on that path.

Where do definitions of a reach?
Reaching definitions

Definition of variable \(x \) at program point \(d \) reaches point \(u \) if \(\exists \) control-flow path \(p \) from \(d \) to \(u \) such that no definition of \(x \) appears on that path

Where do definitions of \(a \) reach?
Reaching definitions

Definition of variable x at program point d **reaches** point u if

\exists control-flow path p from d to u such that

no definition of x appears on that path

Where do definitions of a reach?
Reaching definitions

Definition of variable x at program point d reaches point u if there exists a control-flow path p from d to u such that no definition of x appears on that path.

Where do definitions of a reach?
Local analysis works only on a single basic block. Computation by simulation or abstract interpretation\(^1\)

- Maintain a set of current reaching definitions
- At the start node, there are no definitions
- Go through all the statements from start to end
- If assignment statement \(x_i := \ldots \)
 - First, \(\forall j \) remove \(x_j \)
 - Then, add \(x_i \) to the set
- Otherwise set unchanged

\(^1\)Execute only bits we care about, namely where definitions reach
Reaching definitions

Local analysis

\[a_1 := 2 \]
\[b := x + 1 \]
\[c := a \times 3 \]
\[a_4 := 4 \]
\[d := a \]
\[\text{return } d \]

Reaching $s_1 = \{\}$
Reaching definitions
Local analysis

\[s_1 : a_1 := 2 \]
- Reaching \(s_1 = \{ \} \)
 - \(s_1 \) defines \(a_1 \)

\[s_2 : b := x + 1 \]
- Reaching \(s_2 = \{ a_1 \} \)

\[s_3 : c := a \times 3 \]

\[s_4 : a_4 := 4 \]

\[s_5 : d := a \]

\[s_6 : \text{return } d \]
Reaching definitions
Local analysis

Reaching $s_1 = \{\}$
s_1 defines a_1

Reaching $s_2 = \{a_1\}$
s_2 defines b

Reaching $s_3 = \{a_1, b\}$

$s_1: a_1 := 2$

$s_2: b := x + 1$

$s_3: c := a \times 3$

$s_4: a_4 := 4$

$s_5: d := a$

s_6: return d
Reaching definitions

Local analysis

Reaching $s_1 = \{\}$
s_1 defines a_1

Reaching $s_2 = \{a_1\}$
s_2 defines b

Reaching $s_3 = \{a_1, b\}$
s_3 defines c

Reaching $s_4 = \{a_1, b, c\}$

s_1
$a_1 := 2$

s_2
$b := x + 1$

s_3
$c := a \ast 3$

s_4
$a_4 := 4$

s_5
$d := a$

s_6
return d
Reaching definitions
Local analysis

s₁: a₁ := 2
Reaching s₁ = {}
s₁ defines a₁

s₂: b := x + 1
s₂ defines b
Reaching s₂ = { a₁ }

s₃: c := a * 3
s₃ defines c
Reaching s₃ = { a₁, b }

s₄: a₄ := 4
s₄ defines a₄, kills a₁
Reaching s₄ = { a₁, b, c }

s₅: d := a
Reaching s₅ = { b, c, a₄ }

s₆: return d
Reaching definitions
Local analysis

s₁
\[a_1 := 2 \]
Reaching \(s₁ = \{ \} \)
s₁ defines \(a_1 \)

s₂
\[b := x + 1 \]
Reaching \(s₂ = \{ a_1 \} \)
s₂ defines \(b \)

s₃
\[c := a \times 3 \]
Reaching \(s₃ = \{ a_1, b \} \)
s₃ defines \(c \)

s₄
\[a₄ := 4 \]
Reaching \(s₄ = \{ a_1, b, c \} \)
s₄ defines \(a₄ \), kills \(a_1 \)

s₅
\[d := a \]
Reaching \(s₅ = \{ b, c, a₄ \} \)
s₅ defines \(d \)

s₆
\[\text{return } d \]
Reaching \(s₆ = \{ b, c, a₄, d \} \)
Control flow complicates matters
Consider reaching definitions:
 - Entering a statement - the \textit{In} program point for the statement
 - Leaving a statement - the \textit{Out} program point for the statement

Root is a special start node
We will try the previous approach on this and see where it fails
Reaching definitions
Global analysis

Control flow example; try the previous approach

\begin{align*}
\text{s}_1 & : & a_1 & := & 2 \\
\text{s}_2 & : & \textbf{if} & x & > & 0 \\
\text{s}_3 & : & a_3 & := & x + 1 \\
\text{s}_4 & : & b & := & 0 \\
\text{s}_5 & : & c & := & a * 2 \\
\text{s}_6 & : & \textbf{if} & y & < & x
\end{align*}
s₄ has 2 predecessors; and don’t know \(\text{Out}(s₆) \)
But, we know at least that a_1 reaches s_4
s_5 has 2 predecessors

1. $a_1 := 2$
2. $\textbf{if } x > 0$
3. $a_3 := x + 1$
4. $b := 0$
5. $c := a \times 2$
6. $\textbf{if } y < x$
All incoming definitions reach; do union
Inconsistency now we know more about $Out(s_6)$
All incoming definitions reach; do union; inconsistency

\[s_4 \quad a_1 := 2 \]
\[\{ a_1 \} \]

\[s_2 \quad \textbf{if} \ x > 0 \]
\[\{ a_1 \} \]

\[s_3 \quad a_3 := x + 1 \]
\[\{ a_3 \} \]

\[s_4 \quad b := 0 \]
\[\{ a_1, b \} \]

\[s_5 \quad c := a * 2 \]
\[\{ a_1, b \} \]

\[s_6 \quad \textbf{if} \ y < x \]
\[\{ a_1, a_3, b, c \} \]
Reaching definitions

Global analysis

Inconsistency

\[
\begin{align*}
 s_1 & : a_1 := 2 & \{a_1\} \\
 s_2 & : \text{if } x > 0 & \{a_1, a_3, b, c\} \\
 s_3 & : a_3 := x + 1 & \{a_3\} \\
 s_4 & : b := 0 & \{a_1, a_3, b, c\} \\
 s_5 & : c := a \times 2 & \{a_1, a_3, b\} \\
 s_6 & : \text{if } y < x & \{a_1, a_3, b, c\}
\end{align*}
\]
Consistent state

\[s_1 : a_1 := 2 \quad \{ a_1 \} \]
\[s_2 : \text{if } x > 0 \quad \{ a_1, a_3, b, c \} \]
\[s_3 : a_3 := x + 1 \quad \{ a_3 \} \]
\[s_4 : b := 0 \quad \{ a_1, a_3, b, c \} \]
\[s_5 : c := a * 2 \quad \{ a_1, a_3, b, c \} \]
\[s_6 : \text{if } y < x \quad \{ a_1, a_3, b, c \} \]
Let us formalise our intuition
Let us formalise our intuition

- To simulate a statement, s, compute $Out(s)$ from $In(s)$
 - If assignment to x, delete all definitions of x, add new definition

 $$Out(s: d_i := \ldots) = (In(s) - \{d_j; \forall j\}) \cup \{d_i\}$$
Let us formalise our intuition

- To simulate a statement, s, compute $Out(s)$ from $In(s)$
 - If assignment to x, delete all definitions of x, add new definition
 $$Out(s : d_i := ...) = (In(s) - \{d_j; \forall j\}) \cup \{d_i\}$$
- Multiple edges must merge to compute $In(s)$ from $Pred(s)$
 - All incoming definitions reach
 $$In(s) = \bigcup_{\forall p \in Pred(s)} Out(p)$$
Let us formalise our intuition

- To simulate a statement, s, compute $Out(s)$ from $In(s)$
 If assignment to x, delete all definitions of x, add new definition
 $$Out(s : d_i := ...) = (In(s) - \{d_j; \forall j\}) \cup \{d_i\}$$

- Multiple edges must merge to compute $In(s)$ from $Pred(s)$
 All incoming definitions reach
 $$In(s) = \bigcup_{\forall p \in Pred(s)} Out(p)$$

- If we don’t know, start with empty
 $$Init(s) = \emptyset$$
Let us formalise our intuition

To simulate a statement, \(s \), compute \(Out(s) \) from \(In(s) \)
If assignment to \(x \), delete all definitions of \(x \), add new definition

\[
Out(s : d_i := ...) = (In(s) - \{ d_j; \forall j \}) \cup \{ d_i \}
\]

Multiple edges must merge to compute \(In(s) \) from \(Pred(s) \)
All incoming definitions reach

\[
In(s) = \bigcup_{\forall p \in Pred(s)} Out(p)
\]

If we don’t know, start with empty

\[
Init(s) = \emptyset
\]

Note that often \(Out(s) \) is written

\[
Out(s : d_i := ...) = (In(s) - Kill(s)) \cup Gen(s)
\]

The \(Gen \) and \(Kill \) sets can often be precomputed
Also, \(\mathbb{EaC} \) combines \(In \) and \(Out \) to use only one equation
Reaching definitions

Observations

- Analysis defines properties at points with *recurrence relations*
- Assumes a control flow graph
- Start with a conservative approximation
- Refine the approximations
- Stop when consistent (no further change)
- Information flows *forward* from a statement to its successors
Ingredients of dataflow analysis

- **Direction** - forward or backward

\[\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \]

- **Meet operator** - merges values from multiple incoming edges

\[\text{In}(s) = \bigcup \forall p \in \text{Pred}(s) \text{Out}(p) \]

- **Value set** - the bits information being passed around

\[\text{Sets of definitions} \]

\[\text{Initial values} \]

\[\text{Should be most conservative value} \]

\[\text{Start node often a special case; e.g. encoding function} \]

2 In a later lecture
Ingredients of dataflow analysis

- **Direction** - forward or backward
- **Transfer function** - computes statement effect
 - e.g. $Out(s) = Gen(s) \cup (In(s) - Kill(s))$

\(^2\)In a later lecture
Ingredients of dataflow analysis

- **Direction** - forward or backward
- **Transfer function** - computes statement effect
 - e.g. $Out(s) = Gen(s) \cup (In(s) - Kill(s))$
- **Meet operator** - merges values from multiple incoming edges
 - e.g. $In(s) = \bigcup_{p \in Pred(s)} Out(p)$

2 In a later lecture
Ingredients of dataflow analysis

- **Direction** - forward or backward
- **Transfer function** - computes statement effect
 - e.g. \(Out(s) = Gen(s) \cup (In(s) - Kill(s)) \)
- **Meet operator** - merges values from multiple incoming edges
 - e.g. \(In(s) = \bigcup_{\forall p \in Pred(s)} Out(p) \)
- **Value set** - the bits information being passed around
 - e.g. Sets of definitions

\(^2\)In a later lecture
Ingredients of dataflow analysis

- **Direction** - forward or backward
- **Transfer function** - computes statement effect
 - e.g. $Out(s) = Gen(s) \cup (ln(s) - Kill(s))$
- **Meet operator** - merges values from multiple incoming edges
 - e.g. $ln(s) = \bigcup_{\forall p \in Pred(s)} Out(p)$
- **Value set** - the bits information being passed around
 - e.g. Sets of definitions
- **Initial values**
 - Should be most conservative value
 - Start node often a special case; e.g. encoding function parameters

\[^2\text{In a later lecture}\]
Ingredients of dataflow analysis

- **Direction** - forward or backward
- **Transfer function** - computes statement effect
 - e.g. $Out(s) = Gen(s) \cup (In(s) - Kill(s))$
- **Meet operator** - merges values from multiple incoming edges
 - e.g. $In(s) = \bigcup_{p \in Pred(s)} Out(p)$
- **Value set** - the bits information being passed around
 - e.g. Sets of definitions
- **Initial values**
 - Should be most conservative value
 - Start node often a special case; e.g. encoding function parameters
- Some properties of the above to ensure termination\(^2\)

\(^2\)In a later lecture
Algorithms
Round-robin iterative algorithm

for each node\(^3\), n, do
 Initialise n
while values changing do
 for each node do
 Apply meet and transfer function

There are many, many data flow algorithms that fit

\(^3\)Note, node not statement. Include special start node
Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
In(s) &= \bigcup_{\forall p \in \text{Pred}(s)} \text{Out}(p) \\
\text{Out}(s : d_i := \ldots) &= (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \\
RD(s) &= \bigcup_{\forall p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RD^4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \(In\) and \(Out\) are combined
Algorithms
Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]

\[\text{Out}(s : d_i := \ldots) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \]

\[RD(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (RD(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
<th>s₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD⁴</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td></td>
<td>∅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁴For brevity, In and Out are combined
Reaching definitions control flow example - Calculate RD sets?

\[In(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]

\[\text{Out}(s : d_i := ...) = (In(s) - \{d_j; \forall j\}) \cup d_i \]

\[RD(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (RD(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^4\text{For brevity, } In \text{ and } Out \text{ are combined}\)
Algorithms
Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]
\[\text{Out}(s : d_i := \ldots) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \]
\[\text{RD}(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
<th>s₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD⁴</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td></td>
<td>∅</td>
<td>a₁</td>
<td>a₁</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁴For brevity, In and Out are combined
Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]

\[\text{Out}(s : d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \]

\[\text{RD}(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
<th>s₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD⁴</td>
<td>ø</td>
<td>ø</td>
<td>ø</td>
<td>ø</td>
<td>ø</td>
<td>ø</td>
</tr>
<tr>
<td></td>
<td>ø</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>ø</td>
<td>ø</td>
</tr>
</tbody>
</table>

⁴For brevity, In and Out are combined
Algorithms

Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]

\[\text{Out}(s : d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \]

\[\downarrow \]

\[\text{RD}(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(\emptyset)</td>
<td></td>
</tr>
</tbody>
</table>

\(^4\)For brevity, In and Out are combined
Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
\text{In}(s) &= \bigcup_{\forall p \in \text{Pred}(s)} \text{Out}(p) \\
\text{Out}(s : d_i := \ldots) &= (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \\
\text{RD}(s) &= \bigcup_{\forall p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
<td></td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \textit{In} and \textit{Out} are combined.
Algorithms
Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]
\[\text{Out}(s : d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \]
\[\Downarrow \]
\[\text{RD}(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \(\text{In} \) and \(\text{Out} \) are combined
Reaching definitions control flow example - Calculate RD sets?

\[In(s) = \bigcup_{\forall p \in \text{Pred}(s)} Out(p) \]

\[Out(s : d_i := \ldots) = (In(s) - \{d_j; \forall j\}) \cup d_i \]

\[RD(s) = \bigcup_{\forall p : d_i = \ldots \in \text{Pred}(s)} (RD(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \(In \) and \(Out \) are combined
Reaching definitions control flow example - Calculate RD sets?

\[
\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p)
\]

\[
\text{Out}(s : d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i
\]

\[
\text{RD}(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \(\text{In}\) and \(\text{Out}\) are combined
Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
\text{In}(s) &= \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \\
\text{Out}(s : d_i := \ldots) &= (\text{In}(s) - \{d_j ; \forall j\}) \cup d_i \\
\Downarrow \\
\text{RD}(s) &= \bigcup_{\forall p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j ; \forall j\}) \cup \{d_i\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b, c)</td>
<td>(a_1, a_3, b, c)</td>
<td></td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \text{In} and \text{Out} are combined
Algorithms
Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
\text{In}(s) &= \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \\
\text{Out}(s : d_i := \ldots) &= (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \\
\downarrow \\
\text{RD}(s) &= \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td></td>
<td>\emptyset</td>
<td>a_1</td>
<td>a_1</td>
<td>a_1</td>
<td>a_1, a_3, b</td>
<td>a_1, a_3, b, c</td>
</tr>
<tr>
<td></td>
<td>\emptyset</td>
<td>a_1</td>
<td>a_1, a_3, b, c</td>
<td>a_1, a_3, b, c</td>
<td>a_1, a_3, b, c</td>
<td>a_1, a_3, b, c</td>
</tr>
</tbody>
</table>

\(^4\)For brevity, In and Out are combined
Algorithms
Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
\text{In}(s) &= \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \\
\text{Out}(s : d_i := \ldots) &= (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \\
\downarrow \\
\text{RD}(s) &= \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
<th>s₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD⁴</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td></td>
<td>∅</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
</tr>
<tr>
<td></td>
<td>∅</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
</tr>
</tbody>
</table>

⁴For brevity, In and Out are combined.
Reaching definitions control flow example - Calculate RD sets?

\[In(s) = \bigcup_{p \in \text{Pred}(s)} Out(p) \]

\[Out(s : d_i := ...) = (In(s) - \{d_j; \forall j\}) \cup d_i \]

\[RD(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (RD(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
</tbody>
</table>

\(^4\) For brevity, \(In \) and \(Out \) are combined.
Does round robin for reaching definitions always terminate?
Does round robin for reaching definitions always terminate?

Yes

- Each step of the iteration can only grow a set or leave unchanged
- Finite number of elements in each set, so finite number of times can change
- Each iteration either has a change or stops
- Must terminate
Algorithms

Speeding up

- Round-robin algorithm is slow, may require many passes through nodes
- Can speed up by considering basic blocks (e.g. compute Gen and Kill for whole block)
- Only nodes which have inputs changed need to be processed - use work list
- Reducible graphs can be handled more efficiently (see EaC p.527)
May reduce number of iterations by changing evaluation order\(^5\)

- **Backward analysis** - evaluate node after successors

 Use **postorder**

- **Forward analysis** - evaluate node before successors

 Use **reverse postorder**

Orders for reaching definitions example

<table>
<thead>
<tr>
<th>Post(1)</th>
<th>s_4 s_6 s_5 s_3 s_2 s_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post(2)</td>
<td>s_6 s_5 s_4 s_3 s_2 s_1</td>
</tr>
<tr>
<td>Rev(1)</td>
<td>s_1 s_2 s_3 s_5 s_6 s_4</td>
</tr>
<tr>
<td>Rev(2)</td>
<td>s_1 s_2 s_3 s_4 s_5 s_6</td>
</tr>
</tbody>
</table>

\(^5\)A lot of theory about this. Given certain conditions then a round-robin postorder alg will finish in \(d(G) + 3\) passes where \(d(G)\) is the loop connectedness. Muchnick for more details
Data flow analyses have some limitations:

- Static analysis may be very conservative
- True CFG generally undecidable
 - (e.g. condition may be constant but unprovable)
- Pointers introduce aliases
 - E.g. \(*x = 10; \) Does \(x \) point to another variable, \(y \) or \(z \)? That would give a definition of \(y \) or \(z \). May not know at compile time which
 - Precise alias analysis not solved
- Array access
 - Generally cannot tell which indices are used
- Function calls may not be reasoned across
 - If inter-procedural, virtual calls and function pointer expand sets of functions
Some IRs/analyses force different information along edges

- Range analysis: compute possible ranges of integers; must know which edge out of `if`
- Java exception: change the stack contents

Each edge has a label - (e.g. `THEN`, `ELSE`, `EXCEPTION`)

Transfer function includes label as argument
Summary

- Reaching definitions
- Data flow algorithms
The biggest revolution in the technological landscape for fifty years

Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk