Compiler Optimisation

3 – Dataflow Analysis

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2018
Optimisations often split into
- **Analysis**: Calculate some values at points in program
- **Transformation**: Improve the program where analysis allows

Data flow analyses are common class of analyses

Data pushed around control flow graph simulating effect of statements

This lecture introduces:
- Reaching definitions analysis in detail
- Algorithms to compute data flow
Reaching definitions

Definition of variable x at program point d reaches point u if there exists a control-flow path p from d to u such that no definition of x appears on that path.

Where do definitions of a reach?
Reaching definitions

Definition of variable x at program point d reaches point u if there exists a control-flow path p from d to u such that no definition of x appears on that path.

Where do definitions of a reach?
Definition of variable x at program point d reaches point u if
\[\exists \ \text{control-flow path } p \text{ from } d \text{ to } u \text{ such that no definition of } x \text{ appears on that path.} \]
Reaching definitions

Definition of variable x at program point d reaches point u if there exists a control-flow path p from d to u such that no definition of x appears on that path.

Where do definitions of a reach?
Local analysis works only on a single basic block. Computation by simulation or abstract interpretation\(^1\)

- Maintain a set of current reaching definitions
- At the start node, there are no definitions
- Go through all the statements from start to end
- If assignment statement \(x_i := \ldots\)
 - First, \(\forall j\) remove \(x_j\)
 - Then, add \(x_i\) to the set
- Otherwise set unchanged

\(^1\) Execute only bits we care about, namely where definitions reach
Reaching definitions
Local analysis

Reaching $s_1 = \emptyset$

- $s_1: a_1 := 2$
- $s_2: b := x + 1$
- $s_3: c := a \times 3$
- $s_4: a_4 := 4$
- $s_5: d := a$
- $s_6: \text{return } d$
Reaching definitions

Local analysis

Reaching $s_1 = \{\}$

s_1 defines a_1

Reaching $s_2 = \{a_1\}$

s_2 $b := x + 1$

s_3 $c := a \times 3$

s_4 $a_4 := 4$

s_5 $d := a$

s_6 return d
Reaching definitions
Local analysis

s₁ \(a₁ := 2 \)

Reaching \(s₁ = \{ \} \)
s₁ defines \(a₁ \)

s₂ \(b := x + 1 \)

Reaching \(s₂ = \{ a₁ \} \)
s₂ defines \(b \)

Reaching \(s₃ = \{ a₁, b \} \)

s₃ \(c := a * 3 \)

s₄ \(a₄ := 4 \)

s₅ \(d := a \)

s₆ \(\text{return } d \)
Reaching definitions
Local analysis

\[s_1 \]
\[a_1 := 2 \]
\(s_1 \) defines \(a_1 \)
Reaching \(s_2 = \{ a_1 \} \)

\[s_2 \]
\[b := x + 1 \]
\(s_2 \) defines \(b \)
Reaching \(s_3 = \{ a_1, b \} \)

\[s_3 \]
\[c := a * 3 \]
\(s_3 \) defines \(c \)
Reaching \(s_4 = \{ a_1, b, c \} \)

\[s_4 \]
\[a_4 := 4 \]

\[s_5 \]
\[d := a \]

\[s_6 \]
\[\text{return } d \]
Reaching definitions

Local analysis

Reaching $s_1 = {}$
s_1 defines a_1

Reaching $s_2 = \{ a_1 \}$
s_2 defines b

Reaching $s_3 = \{ a_1, b \}$
s_3 defines c

Reaching $s_4 = \{ a_1, b, c \}$
s_4 defines a_4, kills a_1

Reaching $s_5 = \{ b, c, a_4 \}$

s_1: $a_1 := 2$

s_2: $b := x + 1$

s_3: $c := a * 3$

s_4: $a_4 := 4$

s_5: $d := a$

s_6: return d
Reaching definitions
Local analysis

```
Reaching \( s_1 = \{ \} \)
s_1 \text{ defines } a_1

Reaching \( s_2 = \{ a_1 \} \)
s_2 \text{ defines } b

Reaching \( s_3 = \{ a_1, b \} \)
s_3 \text{ defines } c

Reaching \( s_4 = \{ a_1, b, c \} \)
s_4 \text{ defines } a_4, \text{ kills } a_1

Reaching \( s_5 = \{ b, c, a_4 \} \)
s_5 \text{ defines } d

Reaching \( s_6 = \{ b, c, a_4, d \} \)
```

\[s_1 \quad a_1 := 2 \]
\[s_2 \quad b := x + 1 \]
\[s_3 \quad c := a \times 3 \]
\[s_4 \quad a_4 := 4 \]
\[s_5 \quad d := a \]
\[s_6 \quad \text{return } d \]
Reaching definitions
Global analysis

- Control flow complicates matters
- Consider reaching definitions:
 - Entering a statement - the \textit{In} program point for the statement
 - Leaving a statement - the \textit{Out} program point for the statement
- Root is a special start node
- We will try the previous approach on this and see where it fails
Reaching definitions
Global analysis

Control flow example; try the previous approach

\[s_1 \quad a_1 := 2 \]

\[s_2 \quad \textbf{if} \ x > 0 \]

\[s_3 \quad a_3 := x + 1 \]

\[s_4 \quad b := 0 \]

\[s_5 \quad c := a \times 2 \]

\[s_6 \quad \textbf{if} \ y < x \]
Reaching definitions

Global analysis

s_4 has 2 predecessors; and don’t know $Out(s_6)$
Reaching definitions

Global analysis

But, we know at least that a_1 reaches s_4
s_5 has 2 predecessors

$\begin{align*}
s_1: & \quad a_1 := 2 \\
s_2: & \quad \textbf{if } x > 0 \\
s_3: & \quad a_3 := x + 1 \\
s_4: & \quad b := 0 \\
s_5: & \quad c := a \ast 2 \\
s_6: & \quad \textbf{if } y < x
\end{align*}$
Reaching definitions
Global analysis

All incoming definitions reach; do union

\[
\begin{align*}
&\text{\texttt{s}_1} \quad a_1 := 2 \\
&\text{\texttt{s}_2} \quad \textbf{if } x > 0 \\
&\text{\texttt{s}_3} \quad a_3 := x + 1 \\
&\text{\texttt{s}_4} \quad b := 0 \\
&\text{\texttt{s}_5} \quad c := a \times 2 \\
&\text{\texttt{s}_6} \quad \textbf{if } y < x
\end{align*}
\]
Inconsistency now we know more about $Out(s_6)$
Reaching definitions
Global analysis

All incoming definitions reach; do union; inconsistency
Inconsistency
Reaching definitions
Global analysis

Consistent state

\[s_1: a_1 := 2 \]
\[s_2: \text{if } x > 0 \]
\[s_3: a_3 := x + 1 \]
\[s_4: b := 0 \]
\[s_5: c := a \times 2 \]
\[s_6: \text{if } y < x \]
Reaching definitions
Dataflow equations

Let us formalise our intuition
Reaching definitions
Dataflow equations

Let us formalise our intuition

- To simulate a statement, \(s \), compute \(\text{Out}(s) \) from \(\text{In}(s) \)
- If assignment to \(x \), delete all definitions of \(x \), add new definition

\[
\text{Out}(s: d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup \{d_i\}
\]
Let us formalise our intuition

- To simulate a statement, s, compute $Out(s)$ from $In(s)$.
 If assignment to x, delete all definitions of x, add new definition:
 $$Out(s : d_i := ...) = (In(s) - \{d_j; \forall j\}) \cup \{d_i\}$$

- Multiple edges must merge to compute $In(s)$ from $Pred(s)$.
 All incoming definitions reach:
 $$In(s) = \bigcup_{\forall p \in Pred(s)} Out(p)$$
Let us formalise our intuition

- To simulate a statement, s, compute $Out(s)$ from $In(s)$
 - If assignment to x, delete all definitions of x, add new definition
 \[
 Out(s : d_i := \ldots) = (In(s) - \{d_j ; \forall j\}) \cup \{d_i\}
 \]
- Multiple edges must merge to compute $In(s)$ from $Pred(s)$
 - All incoming definitions reach
 \[
 In(s) = \bigcup_{\forall p \in Pred(s)} Out(p)
 \]
- If we don’t know, start with empty
 \[
 Init(s) = \emptyset
 \]
Reaching definitions

Dataflow equations

Let us formalise our intuition

- To simulate a statement, s, compute $Out(s)$ from $In(s)$
 - If assignment to x, delete all definitions of x, add new definition
 $$Out(s : d_i := ...) = (In(s) - \{d_j; \forall j\}) \cup \{d_i\}$$
 - Multiple edges must merge to compute $In(s)$ from $Pred(s)$
 - All incoming definitions reach
 $$In(s) = \bigcup_{\forall p \in Pred(s)} Out(p)$$
 - If we don’t know, start with empty
 $$Init(s) = \emptyset$$

- Note that often $Out(s)$ is written
 $$Out(s : d_i := ...) = (In(s) - Kill(s)) \cup Gen(s)$$

The Gen and $Kill$ sets can often be precomputed

Also, EaC combines In and Out to use only one equation
Observation: Analysis defines properties at points with *recurrence relations*. It assumes a control flow graph, starts with a conservative approximation, refines the approximations, and stops when consistent (no further change). Information flows *forward* from a statement to its successors.
Ingredients of dataflow analysis

- **Direction** - forward or backward

2 In a later lecture
Ingredients of dataflow analysis

- **Direction** - forward or backward
- **Transfer function** - computes statement effect
 - e.g. \(\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \)

\[2\text{In a later lecture}\]
Ingredients of dataflow analysis

- **Direction** - forward or backward

- **Transfer function** - computes statement effect
 - e.g. $Out(s) = Gen(s) \cup (In(s) - Kill(s))$

- **Meet operator** - merges values from multiple incoming edges
 - e.g. $In(s) = \bigcup_{p \in Pred(s)} Out(p)$

Some properties of the above to ensure termination

2In a later lecture
Ingredients of dataflow analysis

- **Direction** - forward or backward
- **Transfer function** - computes statement effect
 - e.g. $Out(s) = Gen(s) \cup (In(s) - Kill(s))$
- **Meet operator** - merges values from multiple incoming edges
 - e.g. $In(s) = \bigcup_{\forall p \in Pred(s)} \bigcup_{Out(p)}$
- **Value set** - the bits information being passed around
 - e.g. Sets of definitions

\(^2\)In a later lecture
Ingredients of dataflow analysis

- **Direction** - forward or backward
- **Transfer function** - computes statement effect
 - e.g. $Out(s) = Gen(s) \cup (In(s) - Kill(s))$
- **Meet operator** - merges values from multiple incoming edges
 - e.g. $In(s) = \bigcup_{p \in Pred(s)} Out(p)$
- **Value set** - the bits information being passed around
 - e.g. Sets of definitions
- **Initial values**
 - Should be most conservative value
 - Start node often a special case; e.g. encoding function parameters

\[\text{In a later lecture}\]
Ingredients of dataflow analysis

- **Direction** - forward or backward
- **Transfer function** - computes statement effect
 - e.g. \(\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \)
- **Meet operator** - merges values from multiple incoming edges
 - e.g. \(\text{In}(s) = \bigcup_{\forall p \in \text{Pred}(s)} \text{Out}(p) \)
- **Value set** - the bits information being passed around
 - e.g. Sets of definitions
- **Initial values**
 - Should be most conservative value
 - Start node often a special case; e.g. encoding function parameters
- Some properties of the above to ensure termination\(^2\)

\(^2\)In a later lecture
for each node\(^3\), n, do
 Initialise n
while values changing do
 for each node do
 Apply meet and transfer function
There are many, many data flow algorithms that fit

\(^3\)Note, node not statement. Include special start node
Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]
\[\text{Out}(s : d_i := \ldots) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \]
\[\downarrow \]
\[\text{RD}(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

\(^4\)For brevity, In and Out are combined.
Reaching definitions control flow example - Calculate RD sets?

\[In(s) = \bigcup_{p \in Pred(s)} Out(p) \]
\[Out(s : d_i := ...) = (In(s) - \{d_j; \forall j\}) \cup d_i \]
\[RD(s) = \bigcup_{p : d_i = \ldots \in Pred(s)} (RD(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \(In\) and \(Out\) are combined
Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
In(s) &= \bigcup_{\forall p \in \text{Pred}(s)} \text{Out}(p) \\
Out(s : d_i := \ldots) &= (In(s) - \{d_j : \forall j\}) \cup d_i \\
RD(s) &= \bigcup_{\forall p : d_i = \ldots \in \text{Pred}(s)} (RD(p) - \{d_j : \forall j\}) \cup \{d_i\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \(In\) and \(Out\) are combined
Algorithms
Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{\forall p \in \text{Pred}(s)} \text{Out}(p) \]

\[\text{Out}(s : d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \]

\[\text{RD}(s) = \bigcup_{\forall p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \textit{In} and \textit{Out} are combined
Reaching definitions control flow example - Calculate RD sets?

\[In(s) = \bigcup_{p \in \text{Pred}(s)} Out(p) \]

\[Out(s : d_i := ...) = (In(s) - \{d_j; \forall j\}) \cup d_i \]

\[RD(s) = \bigcup_{\forall p : d_i = \ldots \in \text{Pred}(s)} (RD(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
<th>s₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD⁴</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td></td>
<td>∅</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>

⁴For brevity, In and Out are combined
Algorithms
Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]
\[\text{Out}(s : d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \]
\[\Downarrow \]
\[\text{RD}(s) = \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td></td>
<td>\emptyset</td>
<td>a_1</td>
<td>a_1</td>
<td>a_1</td>
<td>a_1, a_3, b</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

4For brevity, In and Out are combined
Reaching definitions control flow example - Calculate RD sets?

\[In(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]

\[Out(s : d_i := ...) = (In(s) - \{d_j; \forall j\}) \cup d_i \]

\[RD(s) = \bigcup_{p : d_i := \ldots \in \text{Pred}(s)} (RD(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
<td></td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \(In \) and \(Out \) are combined
Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
In(s) &= \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \\
Out(s : d_i := \ldots) &= (In(s) - \{d_j ; \forall j \}) \cup d_i \\
RD(s) &= \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (RD(p) - \{d_j ; \forall j \}) \cup \{d_i \}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
<th>s₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD⁴</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td></td>
<td>Ø</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁, a₃, b</td>
<td>a₁, a₃, b, c</td>
</tr>
<tr>
<td></td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁴For brevity, \text{In} and \text{Out} are combined
Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
\text{In}(s) &= \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \\
\text{Out}(s : d_i := \ldots) &= (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \\
\text{RD}(s) &= \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
<th>s₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD⁴</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td></td>
<td>∅</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
</tr>
<tr>
<td></td>
<td>∅</td>
<td>a₁</td>
<td></td>
<td></td>
<td>a₁, a₃, b</td>
<td>a₁, a₃, b, c</td>
</tr>
</tbody>
</table>

⁴For brevity, In and Out are combined
Algorithms
Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \]
\[\text{Out}(s : d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i \]
\[\Downarrow \]
\[\text{RD}(s) = \bigcup_{p:d_i=... \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\} \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^4\text{For brevity, In and Out are combined}\)
Reaching definitions control flow example - Calculate RD sets?

![Control Flow Diagram](image)

In the context of control flow analysis, consider the following example:

- **s_1:** $a_1 := 2$
- **s_2:** if $x > 0$
- **s_3:** $a_3 := x + 1$
- **s_4:** $b := 0$
- **s_5:** $c := a \times 2$
- **s_6:** if $y < x$

Definitions:

- $\text{In}(s) = \bigcup_{\forall p \in \text{Pred}(s)} \text{Out}(p)$
- $\text{Out}(s : d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i$
- $\text{RD}(s) = \bigcup_{\forall p : d_i = ... \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\}$

Table: RD sets:

<table>
<thead>
<tr>
<th>Node</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td></td>
<td>\emptyset</td>
<td>a_1</td>
<td>a_1</td>
<td>a_1</td>
<td>a_1, a_3, b</td>
<td>a_1, a_3, b, c</td>
</tr>
<tr>
<td></td>
<td>\emptyset</td>
<td>a_1</td>
<td>a_1</td>
<td>a_1, a_3, b, c</td>
<td>a_1, a_3, b, c</td>
<td>a_1, a_3, b, c</td>
</tr>
</tbody>
</table>

4For brevity, In and Out are combined
Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
In(s) &= \bigcup_{\forall p \in \text{Pred}(s)} \text{Out}(p) \\
\text{Out}(s : d_i := \ldots) &= (\text{In}(s) - \{d_j : \forall j\}) \cup d_i \\
\Downarrow
RD(s) &= \bigcup_{\forall p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j : \forall j\}) \cup \{d_i\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
<td></td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b, c)</td>
<td>(a_1, a_3, b, c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^4\)For brevity, In and Out are combined
Reaching definitions control flow example - Calculate RD sets?

\[\text{In}(s) = \bigcup_{p \in \text{Pred}(s)} \forall p \in \text{Pred}(s) \\text{Out}(p)\]

\[\text{Out}(s : d_i := ...) = (\text{In}(s) - \{d_j; \forall j\}) \cup d_i\]

\[\text{RD}(s) = \bigcup_{p: d_i = ... \in \text{Pred}(s)} (\text{RD}(p) - \{d_j; \forall j\}) \cup \{d_i\}\]

<table>
<thead>
<tr>
<th>Node</th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
<th>s₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD⁴</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td></td>
<td>∅</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
</tr>
<tr>
<td></td>
<td>∅</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
<td>a₁</td>
</tr>
</tbody>
</table>

⁴For brevity, \text{In} and \text{Out} are combined
Reaching definitions control flow example - Calculate RD sets?

\[
\begin{align*}
In(s) &= \bigcup_{p \in \text{Pred}(s)} \text{Out}(p) \\
\text{Out}(s : d_i := \ldots) &= (\text{In}(s) - \{d_j ; \forall j\}) \cup d_i \\
RD(s) &= \bigcup_{p : d_i = \ldots \in \text{Pred}(s)} (\text{RD}(p) - \{d_j ; \forall j\}) \cup \{d_i\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Node</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD(^4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b, c)</td>
<td>(a_1, a_3, b, c)</td>
<td>(a_1, a_3, b, c)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
<tr>
<td></td>
<td>(\emptyset)</td>
<td>(a_1)</td>
<td>(a_1, a_3, b, c)</td>
<td>(a_1, a_3, b, c)</td>
<td>(a_1, a_3, b, c)</td>
<td>(a_1, a_3, b, c)</td>
</tr>
</tbody>
</table>

\(^4\)For brevity, \(\text{In}\) and \(\text{Out}\) are combined
Does round robin for reaching definitions always terminate?
Does round robin for reaching definitions always terminate?

Yes

- Each step of the iteration can only grow a set or leave unchanged
- Finite number of elements in each set, so finite number of times can change
- Each iteration either has a change or stops
- Must terminate
Algorithms

Speeding up

- Round-robin algorithm is slow, may require many passes through nodes
- Can speed up by considering basic blocks (e.g. compute Gen and Kill for whole block)
- Only nodes which have inputs changed need to be processed - use work list
- Reducible graphs can be handled more efficiently (see EaC p.527)
Algorithms
Order matters

May reduce number of iterations by changing evaluation order\(^5\)

- Backward analysis - evaluate node after successors
 Use **postorder**
- Forward analysis - evaluate node before successors
 Use **reverse postorder**

Orders for reaching definitions example

<table>
<thead>
<tr>
<th>Post(1)</th>
<th>(s_4 s_6 s_5 s_3 s_2 s_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post(2)</td>
<td>(s_6 s_5 s_4 s_3 s_2 s_1)</td>
</tr>
<tr>
<td>Rev(1)</td>
<td>(s_1 s_2 s_3 s_5 s_6 s_4)</td>
</tr>
<tr>
<td>Rev(2)</td>
<td>(s_1 s_2 s_3 s_4 s_5 s_6)</td>
</tr>
</tbody>
</table>

\(^5\)A lot of theory about this. Given certain conditions then a round-robin postorder alg will finish in \(d(G) + 3\) passes where \(d(G)\) is the loop connectedness. Muchnick for more details
Data flow analyses have some limitations:

- Static analysis may be very conservative
- True CFG generally undecidable
 - (e.g. condition may be constant but unprovable)
- Pointers introduce aliases
 - E.g. \(*x = 10\); Does \(x\) point to another variable, \(y\) or \(z\)? That would give a definition of \(y\) or \(z\). May not know at compile time which
 - Precise alias analysis not solved
- Array access
 - Generally cannot tell which indices are used
- Function calls may not be reasoned across
 - If inter-procedural, virtual calls and function pointer expand sets of functions
Some IRs/analyses force different information along edges
- Range analysis: compute possible ranges of integers; must know which edge out of if
- Java exception: change the stack contents

Each edge has a label - (e.g. THEN, ELSE, EXCEPTION)

Transfer function includes label as argument
Summary

- Reaching definitions
- Data flow algorithms
The biggest revolution in the technological landscape for fifty years
Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk

• 4-year programme: MSc by Research + PhD

• Research-focused: Work on your thesis topic from the start

• Collaboration between:
 ▶ University of Edinburgh’s School of Informatics
 ★ Ranked top in the UK by 2014 REF
 ▶ Edinburgh Parallel Computing Centre
 ★ UK’s largest supercomputing centre

• Research topics in software, hardware, theory and application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

• Full funding available

• Industrial engagement programme includes internships at leading companies

The biggest revolution in the technological landscape for fifty years

Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk