
Compiler Optimisation
2 – Coursework

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2018

Course work

Based on GCC compiler
One piece of course work: 25% of course mark
Set today and due Thursday 4pm Feb 22rd 2018 week 6
Feedback due Thursday 4pm Mar 8th 2018 week 8
Penalties for late submission.
Plagiarism software used. Do your own work!

Iterative Compilation
Find the best way to compile a program

Goal

Evaluate different compiler optimisation settings on a set of
benchmarks.
Try to beat -O3

Write a report about your methodology and your findings.

Program Optimisation in GCC

GCC supports some simple levels of optimisations:
-O1, -O2, -O3

At each level, a set of optimisations are enabled
(25 for O1, 25+29 for O2 and 19+28+9 for O3)
At higher levels, more optimisations are enabled which results
in potentially1 faster code, but also slows down the
compilation process.
Rather than using these pre-defined optimisation options, the
users can enable individual options themselves, e.g.
“-funroll-loops”.
For more information on optimisation options see
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

1Not all optimisations make code better

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Methodology: Evaluating Compiler Flags

Always use -O3: Some optimisations won’t work without it
Randomly choose flags (on/off) and parameter values
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Evaluate 200 randomly chosen configurations
(i.e. combinations of optimisations)
Use the same configurations for all benchmarks!

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Running Experiments

Avoid noise:
Make sure no one else is logged on to the computer (using
who) and no other applications are running (using top).
Dont run on top of AFS ⇒ use /disk/scratch or /tmp.
BUT: move the results back to your home-directory and dont
leave the data accessible to everyone

Run benchmarks at least 10 times to get stable results.
Determine how many measurements you need to get a stable
value.
Compute and report average runtime.
Also report the variance and the number of iterations you used.

Running Experiments - Cont.

Use scripting languages to automate the process of evaluating
optimisations on the benchmark programs.
Example (pseudo code)

for each b in benchmarks
for each o in optimisations

compile b with o
run b N times and record runtimes
calculate average runtime and variance

end
end

The Benchmarks

We use 14 benchmarks from the SPEC CPU2006 and
MediaBench II suites.
CPU intensive benchmarks developed from real user
applications.
Download and extract the programs (use wget) from:
https://docs.google.com/file/d/0B5GasMlWJhTOaTdvaFkzUzNobDQ/edit

Let me know if you need more disk space!

https://docs.google.com/file/d/0B5GasMlWJhTOaTdvaFkzUzNobDQ/edit

Directory Structure

Compiling and Running the Benchmarks

Compiling a program with certain optimisations enabled and
executing it a single time:

cd 400.perlbench/src/
make CFLAGS="-funroll-loops –param max-unroll-times=4"
cd ../
./run.sh

Report and Results

Maximum 5 pages + 2 pages for results
Explain what you have done.
Precisely describe the experimental setup.

Architecture and platform. Timing method.
Number of runs per benchmark/configuration

For every program report performance of:
Baseline -O0, -O1, -O2, -O3
Best found flags for individual program.
Best found single set of flags across all programs.
Average across all flag settings (expected random
performance).

Results should be detailed: per-program, average, variance

Report and Results - contd.

Store all raw data in a file. For each program:
First line: program name
Following lines: flag setting and all runtimes
Runtimes in milliseconds, without decimal digits

400.perlbench
"-O0" 837 833 890 850 813 828 ...
"-O1" 602 620 610 611 650 580 ...
...
401.bzip2
"-O0" 837 833 890 850 813 828 ...
"-O1" 602 620 610 611 650 580 ...
...

e-mail file to: hleather@inf.ed.ac.uk WITH the subject:
copt-results

Report Structure

Abstract. (Summary of paper) and Introduction
Evaluation methodology: Selection of flags, etc.
Experimental setup: Platform. How time was measured.
Number of runs.
Results (for each program)

Baseline -O0, -O1, -O2, -O3
Best found flags for individual program.
Best found single set of flags across all programs.
Average across all flag settings (expected random
performance).

Analysis and Discussion of Results. Followed by conclusion.

Submission. Awarding of Marks

Submit to ITO written report by Thursday 4pm Feb 22rd
2018.
Marks are awarded for clear explanation of experimental
methodology and thorough analysis of results.
Remember wish to see optimisation setting that gives best
results per program AND the setting that is best for all the
benchmarks.

Final Remarks

For further questions e-mail me
Start early!! It takes time to run the experiments!
Deadline: Thursday 4pm Feb 22rd 2018

PPar CDT Advert

The biggest revolution
in the technological
landscape for fifty years

Now accepting applications!
Find out more and apply at:

pervasiveparallelism.inf.ed.ac.uk

• • 4-year programme: 4-year programme:
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s
School of Informatics
 ✴ Ranked top in the UK by
2014 REF

 ▶ Edinburgh Parallel Computing
Centre
 ✴ UK’s largest supercomputing
centre

• Full funding available

• Industrial engagement
programme includes
internships at leading
companies

• Research-focused:
 Work on your thesis topic
 from the start

• Research topics in software,
hardware, theory and

 application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

