Compiler Optimisation
12 – Speculative Parallelisation

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2019
Introduction

- This lecture on: “LPRD test: Speculative Run-time Parallelisation of loops with privatization and reduction parallelism”
 - Lawrence Rachwerger PLDI 1995
 - Many follow up papers
 - Expect you to read and understand this paper

- Types of parallel loops
 - Irregular parallelism
 - Reduction parallelism

- LPRD test and examples
Parallel Loop

Doall Implementation

Original

Do i = 1, N
A(i)=B(i)
C(i)=A(i)
Enddo

Driver

p=get_num_proc()
fork(x_sub,p)
join()

Per thread

SUBROUTINE x_sub()
p = get_num_proc()
z = my_id()
ilo = N/p * (z-1) + 1
ihi = min(N, ilo+N/p)
Do i = ilo, ihi
 A(i) = B(i)
 C(i) = A(i)
Enddo
END

Generate \(p \) independent threads of work

- Each has private local variables, \(z, \text{ilo}, \text{ihi} \)
- Access shared arrays \(A, B, \text{and} C \)
Privatisation

Original

<table>
<thead>
<tr>
<th>Do i = 1, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>temp = A(i)</td>
</tr>
<tr>
<td>A(i) = B(i)</td>
</tr>
<tr>
<td>B(i) = temp</td>
</tr>
<tr>
<td>Enddo</td>
</tr>
</tbody>
</table>

`temp` privatised

<table>
<thead>
<tr>
<th>Do all i = 1, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>private temp</td>
</tr>
<tr>
<td>temp = A(i)</td>
</tr>
<tr>
<td>A(i) = B(i)</td>
</tr>
<tr>
<td>B(i) = temp</td>
</tr>
<tr>
<td>Enddo</td>
</tr>
</tbody>
</table>

- `temp` has loop carried anti and output dependence
- Could scalar expand - but increase storage: $O(1)$ to $O(N)$
- Or private to iteration - storage per processor $O(p), p << N$
- Variable, x, is privatisable for each iteration
 - Every read of x is preceded by write of x
Reduction Parallelism

Original

\[
\text{Do } i = 1, N \\
\quad a = a \oplus \exp \\
\text{Enddo}
\]

- Output, flow and anti dependence
- Called a reduction if
 - \(\oplus \) is associative
 - \(\oplus \) is commutative
 - \(\exp \) not contains \(a \)

- Iteration order does not matter!
- Partial sums in parallel and merge
- Can be sequential \(O(p) \) or tree parallel \(O(lg \ p) \)

Parallelised

\[
\text{pa}(z) = 0 \\
\text{Doall } i = \text{ilo, ihi} \\
\quad \text{pa}(z) = \text{pa}(z) \oplus \exp \\
\text{Enddo} \\
\text{call barrier_sync()} \\
\text{if}(z \ .\text{EQ. } 1) \\
\quad \text{Do } x = 1, p \\
\quad \quad a = a \oplus \text{pa}(x) \\
\text{Enddo} \\
\text{Endif}
\]
Irregular Parallelism

Indirect array accesses

Do i = 1 to N
 A(X(i)) = A(Y(i)) + B(i)
Enddo

- Loop carried output dependent if any $X(i_1) = X(i_2)$, $i_1 \neq i_2$
- Loop carried flow/anti dependent if any $X(i_1) = Y(i_2)$, $i_1 \neq i_2$
- Values of X, Y determine dependence
 - Unknown at compile-time
- More than half scientific programs are irregular - sparse arrays
Runtime Parallelisation

Original
Do i = 1, N
 A(i+k) = A(i) + B(i)
Enddo

No dependence if |k| > N

Guarded parallelism
If(-N < K < N)
 Do i = 1, N
 A(i+k) = A(i) + B(i)
 Enddo
Else
 Doall i = 1, N
 A(i+k) = A(i) + B(i)
 Enddo
Endif

- Multiple versions of code
- Analysis at runtime
- Here check simple but can be more complex
Speculative Parallelisation

Original
Do i = 1, N
 A(w(i)) = A(r(i)) + B(i)
Enddo

Speculative
cp = checkpoint()
Doall i = 1, N // parallel
 trace_\(A(w(i), r(i))\)
 A(w(i)) = A(r(i)) + B(i)
Enddo
fail = analyse()
If (fail) // sequential
 restore(cp)
 DO i = 1, N
 A(w(i)) = A(r(i))+B(i)
 Enddo
Else
 discard(cp)
Endif

Assume parallel
Loop not parallel if any
\(r(i_1) = w(i_2), i_1 \neq i_2\)
Collect data access pattern and verify if dependence could occur\(^1\)

\(^1\)Compare vs check dependences not violated
Definitions

Independent Shared Variables

do i=1,n
 f(i) = A(i)
 B(i) = g(i)
end do

A shared variable is independent if it is:

- read-only (e.g., A)
- accessed (written and read) in only one iteration (e.g., B)
Definitions

Privatisable Shared Variables

do i=1,n
 A(l:m) = f(i)
 h(i) = A(l:m)
end do

A shared array A can be *privatised* if and only if

- every read access to an element of A is preceded by a write access to that same element of A within the same iteration of the loop
- it is dead after the loop
Speculatively privatise array elements and parallelise loop
Shadow arrays to record array accesses (per processor)
- If one iteration writes memory and another reads but does not write it – not Doall, speculation failed
- Else if no memory written by different iterations – is Doall, speculation succeeded
- Else if any iteration a value is read before it is written – not privatisable, speculation failed
- Else speculation succeeded!
LRPD test Example

Loop
A(4), B(5), K(5), L(5)
Do i = 1, 5
 z = A(K(i))
 If B(i) .EQ. 0 then
 A(L(i)) = z + C(i)
 Endif
Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K(i_1) = L(i_2), B(i_2) = 0, i_1 \neq i_2
Is it safe?
LRPD test Example

Loop
A(4), B(5), K(5), L(5)
Do i = 1, 5
 z = A(K(i))
 If B(i) .EQ. 0 then
 A(L(i)) = z + C(i)
 Endif
Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K(i1) = L(i2), B(i2) = 0, i1 ≠ i2
Is it safe?
Only consider i2 when B(i2) = 0, gives i2 ∈ {2, 4}
Loop

A(4), B(5), K(5), L(5)
Do i = 1, 5
 z = A(K(i))
 If B(i) .EQ. 0 then
 A(L(i)) = z + C(i)
 Endif
Enddo

Array contents

B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if \(K(i_1) = L(i_2), B(i_2) = 0, i_1 \neq i_2 \)

Is it safe?

Only consider \(i_2 \) when \(B(i_2) = 0 \), gives \(i_2 \in \{2, 4\} \)

\(L(2) = 2, L(4) = 4 \), only matches in \(K \) when \(i_1 = i_2 \)
LRPD test Example

Loop
A(4), B(5), K(5), L(5)
Do i = 1, 5
 z = A(K(i))
 If B(i) .NE. 0 then
 A(L(i)) = z + C(i)
 Endif
Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if \(K(i_1) = L(i_2), B(i_2) = 1, i_1 \neq i_2 \)
Is it safe?
LRPD test Example

Loop

<table>
<thead>
<tr>
<th>A(4), B(5), K(5), L(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do i = 1, 5</td>
</tr>
<tr>
<td>z = A(K(i))</td>
</tr>
<tr>
<td>If B(i).NE. 0 then</td>
</tr>
<tr>
<td>A(L(i)) = z + C(i)</td>
</tr>
<tr>
<td>Endif</td>
</tr>
<tr>
<td>Enddo</td>
</tr>
</tbody>
</table>

Array contents

- B(1:5) = (1, 0, 1, 0, 1)
- K(1:5) = (1, 2, 3, 4, 1)
- L(1:5) = (2, 2, 4, 4, 2)

Unsafe if $K(i_1) = L(i_2)$, $B(i_2) = 1$, $i_1 \neq i_2$

Is it safe?

When $i_1 = 2$, $i_2 = 1$ then

- $K(i_1 = 2) = 2 = L(i_2 = 1)$ and $B(i_2 = 1) = 1$
Allocate shadow arrays A_w, A_r, A_{np} one per processor. $O(n \times p)$ overhead. Speculatively privatise A and execute in parallel. Record accesses to data under test in shadows

- **markwrite($A(i)$):**
 - Increment tw_A (write counter)
 - If first time $A(i)$ written in iteration, mark $A_w(i)$, clear $A_r(i)$
 - (Only concerned with cross-iteration dependences)

- **markread($A(i)$):**
 - If $A(i)$ not already written in iteration, mark $A_r(i)$ and mark $A_{np}(i)$
 - Note $A_{np}(i)$ not cleared by MarkWrite.
 - np = ‘not privatisable if written elsewhere’
LRPD test Marking phase

A(4), B(5), K(5), L(5)
Doall i = 1, 5
 markread(A(K(i)))
 z = A(K(i))
 If B(i) then
 markwrite(A(L(i)))
 A(L(i)) = z + C(i)
 endif
Enddo

Note, some effort to optimise placement of marking.
LRPD test Results after marking

Program
A(4), B(5), K(5), L(5)
Do i = 1, 5
 z = A(K(i))
 If B(i) .EQ. 0 then
 A(L(i)) = z + C(i)
 Endif
Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

LRPD shadows

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_w(1:4)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A_r(1:4)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A_np(1:4)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A_w ∧ A_r</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_w ∧ A_np</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[tm_A = \sum A_w = 2 \]
Total number of distinct elements written
LRPD test Analysis phase

- if $A_w \land A_r$ then NOT Doall read and write in diff iterations to same element
- else if $tw = tm$ then was a Doall unique iterator writes
- else if $A_w \land A_{np}$ then NOT Doall
- otherwise loop privatisation valid, Doall

$A_w \land A_r = 0$: Fail
$tw \neq tm$: Fail
$A_w \land A_{np} = 0$: Fail
Overall privatise - remove output dependence
LRPD test Marking phase
Handling reductions

- Extended to handle reductions
- Allocate shadow arrays per processor. $O(n \times p)$ overhead.
- Record accesses to data under test in shadows
- Mark Redux (\ast)
 - Mark $A(i)$ if element is NOT valid reference in reduction statement - not a reduction variable
- Read paper for details and example
LRPD test Improvements

- One dependence can invalidate speculative parallelisation
 - Partial parallelism not exploited
 - Transform so that up till first dependence parallel
 - Reapply on the remaining iterators.

- Large overheads
 - Adaptive data structures to reduce shadow array overhead

- Large amount of work in speculative parallelisation
 - Hardware support for Thread Level Speculation (TLS), transactional memory
 - Compiler combined with static analysis
Summary

- Summary of parallelisation idioms
- Irregular accesses
- Shadow arrays
- Marking and analysis for Doall and reductions
- Last lecture on parallelism. Next on adaptive compilation
The biggest revolution in the technological landscape for fifty years
Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk

• 4-year programme: MSc by Research + PhD

• Research-focused: Work on your thesis topic from the start

• Collaboration between:
 ▶ University of Edinburgh’s School of Informatics
 ✴ Ranked top in the UK by 2014 REF
 ▶ Edinburgh Parallel Computing Centre
 ✴ UK’s largest supercomputing centre

• Research topics in software, hardware, theory and application of:
 ► Parallelism
 ► Concurrency
 ► Distribution

• Full funding available

• Industrial engagement programme includes internships at leading companies

Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk