Compiler Optimisation
10 – Vectorisation

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2018
This lecture:

- Vector loops - how to write loops in a vector format
- Loop distribution + statement reordering: basic vectorisation
- Dependence condition for vectorisation: Based on loop level
- Kennedy’s Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange: Move vector loops innermost
- Scalar Expansion, Renaming and Node splitting. Overcoming cycles
Vectorisation

What is vectorisation?

- Generalise operations on scalars to apply transparently to vectors, matrices, etc
- Architectures provide vector units, compute multiple elements at once
- Single instruction multiple data (SIMD)
Vectorisation
Vector code

- Use Fortran 90 vector notation to express vectorised loops.
- Triple notation used \(x(start:finish:step) \) to represent a vector in \(x \)
- Vectorisation depends on loop dependence

No loop carried dependence

<table>
<thead>
<tr>
<th>Code</th>
<th>Result</th>
</tr>
</thead>
</table>
| Do \(i = 1, N \)
 \(x(i) = x(i) + c \)
 Enddo | Vectorisable |
| \(x(1:N) = x(1:N) + c \) | |

Loop carried dependence

<table>
<thead>
<tr>
<th>Code</th>
<th>Result</th>
</tr>
</thead>
</table>
| Do \(i = 1, N \)
 \(x(i+1) = x(i) + c \)
 Enddo | Not vectorisable |
| \(x(2:N+1) = x(1:N) + c \) | Reads \(x \) at once |
Vector registers are a fixed size. Need to fit code to registers

Original

```
Do i = 1, N
  x(i) = x(i) + c
Enddo
```

Strip-mined

```
Do i = 1, N, s
  Do ii = i, i+s-1
    x(ii) = x(ii) + c
  Enddo
Enddo
```

Vectorised

```
Do i = 1, N, s
  x(i:i+s-1) = x(i:i+s-1) + c
Enddo
```
Vectorisation
Loop distribution + statement reordering

Standard approach to isolating statements within a loop for later vectorisation

Original
Do i = 1, N
 a(i+1) = b(i) + c
 d(i) = a(i) + e
Enddo

Distributed
Do i = 1, N
 a(i+1) = b(i) + c
Enddo
Do i = 1, N
 d(i) = a(i) + e
Enddo

Vectorised
a(2:N+1) = b(1:N) + c
d(1:N) = a(1:N) + e

Cyclic dependence prevent distribution and hence vectorisation.
Vectorised
Inner loop vectorisation

Do i = 1, N
 Do j = 1, M
 a(i+1,j) = a(i,j) + c
 Enddo
Enddo

- Cannot vectorise as dependence (1,0).
- If outer loop run sequential then can vectorise inner loop with dependence (0).
- Generalises to nested loops.

Do i = 1,N
 a(i+1,1:M) = a(i,1:M) + c
Enddo
Vectorisation algorithm

Simple description of CMA algorithm. **Read CMA!**

1. Form dependence graph
2. Strongly Connected Component (SCC) identification (cycles)
3. Sort SCCs topologically
4. For each SCC
 - If weakly connected then
 - Vectorise using loop distribution
 - Else
 - Write loop start
 - Strip off outer dependence level
 - Goto 1 with SCC as program
 - Write loop end

\(^1\)loop will be sequentialised
Vectorisation algorithm
Review: strongly connected components

Strongly connected
A graph is **strongly connected** if every vertex is reachable from every other vertex

Strongly connected components (SCCs)
SCCs partition a graph into strongly connected subgraphs\(^2\)
Maximal SCCs are largest possible

What are the SCCs?

\(^2\)Use Tarjan’s algorithm
Strongly connected

A graph is **strongly connected** if every vertex is reachable from every other vertex.

Strongly connected components (SCCs)

SCCs partition a graph into strongly connected subgraphs. Maximal SCCs are largest possible.

What are the SCCs?

![Graph representation of SCCs](image)

Use Tarjan's algorithm

^2Use Tarjan's algorithm
Vectorisation algorithm
Review: topological sort

Topological sort of acyclic directed graph

Linear ordering, $<_{\text{topo}}$ of nodes such that if there is edge (u, v), then $u <_{\text{topo}} v$.

Maximal SCC graphs are acyclic directed

What is the topological sort?
Vectorisation algorithm
Review: topological sort

Topological sort of acyclic directed graph
Linear ordering, $<_{\text{topo}}$ of nodes such that if there is edge (u, v), then $u <_{\text{topo}} v$.

Maximal SCC graphs are acyclic directed

What is the topological sort?

![Diagram showing a topological sort of a graph with nodes 1, 2, 3, 4 arranged in order 1 -> 2 -> 3 - 4.](image-url)
Vectorisation algorithm
Review: dependence graphs

<table>
<thead>
<tr>
<th>Flow (True)</th>
<th>Anti</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAW hazard</td>
<td>WAR hazard</td>
<td>WAW hazard</td>
</tr>
<tr>
<td>S_1: $a = $</td>
<td>S_1: $= a$</td>
<td>S_1: $a =$</td>
</tr>
<tr>
<td>S_2: $= a$</td>
<td>S_2: $a = $</td>
<td>S_2: $a =$</td>
</tr>
<tr>
<td>Denoted $S_2 \delta S_1$</td>
<td>Denoted $S_2 \delta^{-1} S_1$</td>
<td>Denoted $S_2 \delta^0 S_1$</td>
</tr>
</tbody>
</table>

Level of loop carried dependence

Level of loop carried dependence is the index of the left-most non “$=$” in direction vector.

Written as subscript, e.g. δ_1 for $(<,=,=)$, δ_3^{-1} for $(=,=,>)$.

Infinity for in same loop, e.g. δ_{∞} for $(=,=,=)$.
Vectorisation algorithm
Example

Example

| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

1 ≤ \(i_r \) ≤ 100, 1 ≤ \(i_w \) ≤ 100, 1 ≤ \(j_w \) ≤ 100

\[i_w + j_w = i_r \]

Has solutions and \(j_w \) always positive, so \(i_w < i_r \) ⇒ direction (\(<\))

Loop carried flow dependence, level one (\(\delta_1 \))
Vectorisation algorithm

Example

| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

<table>
<thead>
<tr>
<th></th>
<th>Do $i = 1,100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>$x(i) = y(i) + 10$</td>
</tr>
<tr>
<td></td>
<td>Do $j = 1,100$</td>
</tr>
<tr>
<td>S_2</td>
<td>$b(j) = a(j,n)$</td>
</tr>
<tr>
<td></td>
<td>Do $k = 1,100$</td>
</tr>
<tr>
<td>S_3</td>
<td>$a(j+1,k) = b(j) + c(j,k)$</td>
</tr>
<tr>
<td></td>
<td>Enddo</td>
</tr>
<tr>
<td>S_4</td>
<td>$y(i+j) = a(j+1,n)$</td>
</tr>
<tr>
<td></td>
<td>Enddo</td>
</tr>
<tr>
<td></td>
<td>Enddo</td>
</tr>
</tbody>
</table>

Clearly direction for j loop is $=$.

For i loop, i is not in either array subscript, so *.

So, direction is $(*, =)$ or $\{(<, =), (=, =), (> , =)\}$ or $\delta_1, \delta_\infty, \delta_1^{-1}$
Vectorisation algorithm

Example

Do \(i = 1,100 \)
\[
 x(i) = y(i) + 10
\]
Do \(j = 1,100 \)
\[
 b(j) = a(j,n)
\]
Do \(k = 1,100 \)
\[
 a(j+1,k) = b(j) + c(j,k)
\]
Enddo

Do \(i+j \)
\[
 y(i+j) = a(j+1,n)
\]
Enddo
Enddo

Label and edge for this dependence?
Example

Vectorisation algorithm

Example

\[
\begin{align*}
S_1 & : \text{Do } i = 1, 100 \\
& \quad x(i) = y(i) + 10 \\
& \quad \text{Do } j = 1, 100 \\
S_2 & : \quad b(j) = a(j, n) \\
& \quad \text{Do } k = 1, 100 \\
S_3 & : \quad a(j+1, k) = b(j) + c(j, k) \\
& \quad \text{Enddo} \\
S_4 & : \quad y(i+j) = a(j+1, n) \\
& \quad \text{Enddo} \\
& \quad \text{Enddo}
\end{align*}
\]

\[1 \leq i_r, j_r, i_w, j_w, k_w \leq 100, n \in \mathbb{N}\]

\[j_w + 1 = j_r, k_w = n\]

Has solutions (assuming \(n\) in range) and \(j_w < j_r \Rightarrow \text{direction} (\ast, <)\)

Directions \(\{(<, <), (\ast, <), (> ,<)\} \) or \(\delta_1, \delta_2, \delta_1^{-1}\)
Vectorisation algorithm

Example

- \(S_1 \) Do \(i = 1,100 \)
 - \(x(i) = y(i) + 10 \)
 - Do \(j = 1,100 \)
- \(S_2 \)
 - \(b(j) = a(j,n) \)
 - Do \(k = 1,100 \)
- \(S_3 \)
 - \(a(j+1,k) = b(j)+c(j,k) \)
 - Enddo
- \(S_4 \)
 - \(y(i+j) = a(j+1,n) \)
 - Enddo
 - Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

Do i = 1,100
\[x(i) = y(i) + 10 \]
Do j = 1,100
\[b(j) = a(j,n) \]
Do k = 1,100
\[a(j+1,k) = b(j) + c(j,k) \]
Enddo
\[y(i+j) = a(j+1,n) \]
Enddo
Enddo

Directions \{(<,=), (=,=), (> ,=)\} or \(\delta_1, \delta_\infty, \delta_{1}^{-1} \)
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
 | $x(i) = y(i) + 10$
 | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
 | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j) + c(j,k)$
 | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
 | Enddo
 | Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Output dependence on itself, at level 1 because i unconstrained.
Vectorisation algorithm

Example

S_1	Do $i = 1,100$
	$x(i) = y(i) + 10$
Do $j = 1,100$	
S_2	$b(j) = a(j,n)$
	Do $k = 1,100$
S_3	$a(j+1,k) = b(j) + c(j,k)$
	Enddo
S_4	$y(i+j) = a(j+1,n)$
	Enddo
	Enddo

Label and edge for this dependence?
Do $i = 1,100$
\[x(i) = y(i) + 10 \]
Do $j = 1,100$
\[b(j) = a(j,n) \]
Do $k = 1,100$
\[a(j+1,k) = b(j)+c(j,k) \]
Enddo
\[y(i+j) = a(j+1,n) \]
Enddo
Enddo

Output dependence on itself, at level 1 because i unconstrained.
Vectorisation algorithm

Example

Label and edge for this dependence?
Vectorisation algorithm

Example

\[
\begin{align*}
S_1 & : \quad \text{Do } i = 1,100 \\
& \quad x(i) = y(i) + 10 \\
& \quad \text{Do } j = 1,100 \\
S_2 & : \quad b(j) = a(j,n) \\
& \quad \text{Do } k = 1,100 \\
S_3 & : \quad a(j+1,k) = b(j)+c(j,k) \\
& \quad \text{Enddo} \\
S_4 & : \quad y(i+j) = a(j+1,n) \\
& \quad \text{Enddo} \\
& \text{Enddo}
\end{align*}
\]

Output dependence on itself, at level 1 because \(i \) unconstrained.
Vectorisation algorithm

Example

<table>
<thead>
<tr>
<th>Step</th>
<th>Code</th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
$\quad x(i) = y(i) + 10$
\quad Do $j = 1,100$
| | $b(j) = a(j,n)$
\quad Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

All the edges
Vectorisation algorithm

Example

<table>
<thead>
<tr>
<th></th>
<th>Do i = 1,100</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>x(i) = y(i) + 10</td>
</tr>
<tr>
<td></td>
<td>Do j = 1,100</td>
</tr>
<tr>
<td>S_2</td>
<td>b(j) = a(j,n)</td>
</tr>
<tr>
<td></td>
<td>Do k = 1,100</td>
</tr>
<tr>
<td>S_3</td>
<td>a(j+1,k) = b(j) + c(j,k)</td>
</tr>
<tr>
<td></td>
<td>Enddo</td>
</tr>
<tr>
<td>S_4</td>
<td>y(i+j) = a(j+1,n)</td>
</tr>
<tr>
<td></td>
<td>Enddo</td>
</tr>
</tbody>
</table>

What are the SCCs?
Vectorisation algorithm

Example

S_1	Do $i = 1,100$
	$x(i) = y(i) + 10$
	Do $j = 1,100$
S_2	$b(j) = a(j,n)$
	Do $k = 1,100$
S_3	$a(j+1,k) = b(j) + c(j,k)$
	Enddo
S_4	$y(i+j) = a(j+1,n)$
	Enddo
	Enddo
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise({S₁, S₂, S₃, S₄}, 1)

SCCs and topological sort gives
{S₂, S₃, S₄}, {S₁}

Do i = 1, 100
 Vectorise({S₂, S₃, S₄}, 2)
Enddo

Vectorise({S₁}, 1)
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_1, S_2, S_3, S_4\}, 1)

SCCs and topological sort gives \{S_2, S_3, S_4\}, \{S_1\}

Do i = 1, 100

Vectorise(\{S_2, S_3, S_4\}, 2)

Enddo

Vectorise(\{S_1\}, 1)
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

```
Vectorise({S1}, 1)
Distribute

Do i = 1, 100
    Vectorise({S2, S3, S4}, 2)
Enddo
Do i = 1, 100
    x(i) = y(i) + 10
Enddo
```
Vectorisation algorithm

Example

\[\text{Vectorise}(\text{Region, LoopDepth, DDG}) \]

\[\text{Vectorise}(\{S_1\}, 1) \]
\[\text{Vectorise} \]
\[\text{Do } i = 1, 100 \]
\[\quad \text{Vectorise}(\{S_2, S_3, S_4\}, 2) \]
\[\text{Enddo} \]
\[x(1:100) = y(1:100) + 10 \]
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_1\}, 1)

\begin{verbatim}
Vectorise
Do i = 1, 100
 Vectorise(\{S_2, S_3, S_4\}, 2)
Enddo
x(1:100) = y(1:100) + 10
\end{verbatim}
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Vectorise(\{S_4\}, 2)
Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm
Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Vectorise(\{S_4\}, 2)
Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo

Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives \{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Enddo
y(i+1:i+100) = a(2:101,N)
Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm
Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3\}, 3)

SCCs and topological sort gives
\{S_2\}, \{S_3\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2\}, 3)
 Vectorise(\{S_3\}, 3)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo

x(1:100) = y(1:100) + 10
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise({S_2, S_3}, 3)

SCCs and topological sort gives
{S_2}, {S_3}

Do i = 1, 100
 Do j = 1, 100
 b(j) = a(j,n)
 a(j+1,1:100)=b(j)+c(j,1:100)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo

x(1:100) = y(1:100) + 10

Note S_2 not in depth 3 – leaves single statement
Dependency reducing transforms

- What happened if no vectorisable regions found?
- Try transformations
Dependency reducing transforms

Loop Interchange

Loop interchange: move loop carried dependences outermost

Do \(j = 1, M \)
 Do \(i = 1, N \)
 \(a(i+1,j) = a(i,j) + c \)
 Enddo
Enddo

Distance \([0,1]\). Even if \(j \) run sequentially, loop carried dep \(i \) not vectorisable.

Do \(i = 1, N \)
 Do \(j = 1, M \)
 \(a(i+1,j) = a(i,j) + c \)
 Enddo
Enddo

Now \([1,0]\) - inner loop vectorisable

Do \(i = 1, N \)
 \(a(i+1,1:N) = a(i,1:N) + c \)
Enddo
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example
Do i = 1, N
 t = a(i)
 a(i) = b(i)
 b(i) = t
Enddo

Where are the dependences?
(Ignore output dependences)
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example

```
Do i = 1, N
    t = a(i)
    a(i) = b(i)
    b(i) = t
Enddo
```

Cycle in dependence graph prevents distribution and vectorisation
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example

Do i = 1, N
 tt(i) = a(i)
 a(i) = b(i)
 b(i) = tt(i)
Enddo

Enddo

Easily distributed and vectorised

Anti dependence removed
Dependency reducing transforms
Scalar expansion

May fail to remove dependence

Original
Do $i = 1, N$
\[
\begin{align*}
t &= t + a(i) + a(i+1) \\
a(i) &= t
\end{align*}
\]
Enddo

Still cyclic
\[
\begin{align*}
tt(0) &= t \\
\text{Do } i &= 1, N \\
tt(i) &= t(i-1) + a(i) + a(i+1) \\
a(i) &= tt(i) \\
\text{Enddo} \\
t &= tt(N)
\end{align*}
\]

- Whether or not scalar expansion can break cycles depends on whether it is a covering definition (see CMA)
- In practice recurrence on the scalar is the biggest problem.

Covering definition
Definition X of scalar S covers the loop, if no earlier definition of S in the loop could reach a use after X
Dependency reducing transforms
Scalar renaming

Can be used to eliminate loop independent output and anti-dependences

Original
Do i = 1, N
 t = a(i) + b(i)
 c(i) = t + t
 t = d(i) - b(i)
 a(i+1) = t * t
Enddo

Renamed
Do i = 1, N
 t1 = a(i) + b(i)
 c(i) = t1 + t1
 t2 = d(i) - b(i)
 a(i+1) = t2 * t2
Enddo

Scalar expansion, loop distribution and vectorisation now possible
Dependency reducing transforms
Node splitting

Scalar expansion and renaming cannot eliminate all cycles

Original
Do i = 1, N
 a(i) = x(i+1) + x(i)
 x(i+1) = b(i) + t
Enddo

Renaming does not break cycle. Critical anti-dependence
Dependency reducing transforms
Node splitting

Scalar expansion and renaming cannot eliminate all cycles

Split
Do i = 1, N
 \text{xx}(i) = x(i+1)
 a(i) = \text{xx}(i) + x(i)
 x(i+1) = b(i) + t
Enddo

Cycle broken. Vectorisable with statement reordering: S_0, S_2, S_1
NP-Complete to find minimal critical dependences
Summary

- Vector loops
- Loop distribution
- Dependence condition for vectorisation
- Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange
- Scalar Expansion, Renaming and Node splitting
- Layout in memory important too!
The biggest revolution in the technological landscape for fifty years

Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk