This lecture:
- Vector loops - how to write loops in a vector format
- Loop distribution + statement reordering: basic vectorisation
- Dependence condition for vectorisation: Based on loop level
- Kennedy’s Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange: Move vector loops innermost
- Scalar Expansion, Renaming and Node splitting. Overcoming cycles
Vectorisation
What is vectorisation?

- Generalise operations on scalars to apply transparently to vectors, matrices, etc
- Architectures provide vector units, compute multiple elements at once
- Single instruction multiple data (SIMD)
Vectorisation

Vector code

- Use Fortran 90 vector notation to express vectorised loops.
- Triple notation used $x(start:finish:step)$ to represent a vector in x.
- Vectorisation depends on loop dependence.

No loop carried dependence

```
Do i = 1, N
  x(i) = x(i) + c
Enddo
```

Vectorisable

```
x(1:N) = x(1:N) + c
```

Loop carried dependence

```
Do i = 1, N
  x(i+1) = x(i) + c
Enddo
```

Not vectorisable

```
x(2:N+1) = x(1:N) + c
```

Reads x at once
Vector registers are a fixed size. Need to fit code to registers

Original

Do i = 1, N
 x(i) = x(i) + c
Enddo

Strip-mined

Do i = 1, N, s
 Do ii = i, i+s-1
 x(ii) = x(ii) + c
 Enddo
Enddo

Vectorised

Do i = 1, N, s
 x(i:i+s-1) = x(i:i+s-1) + c
Enddo
Vectorisation
Loop distribution + statement reordering

Standard approach to isolating statements within a loop for later vectorisation

<table>
<thead>
<tr>
<th>Original</th>
<th>Distributed</th>
</tr>
</thead>
</table>
| Do i = 1, N
 a(i+1) = b(i) + c
 d(i) = a(i) + e
 Enddo | Do i = 1, N
 a(i+1) = b(i) + c
 Enddo
 Do i = 1, N
 d(i) = a(i) + e
 Enddo |

<table>
<thead>
<tr>
<th>Vectorised</th>
</tr>
</thead>
</table>
| a(2:N+1) = b(1:N) + c
 d(1:N) = a(1:N) + e |

Cyclic dependence prevent distribution and hence vectorisation.
Vectorised
Inner loop vectorisation

Do i = 1, N
 Do j = 1, M
 a(i+1,j) = a(i,j) + c
 Enddo
Enddo

- Cannot vectorise as dependence (1,0).
- If outer loop run sequential then can vectorise inner loop with dependence (0).
- Generalises to nested loops.

Do i = 1,N
 a(i+1,1:M) = a(i,1:M) + c
Enddo
Vectorisation algorithm

Simple description of CMA algorithm. Read CMA!

1. Form dependence graph
2. Strongly Connected Component (SCC) identification (cycles)
3. Sort SCCs topologically
4. For each SCC
 - If weakly connected then
 - Vectorise using loop distribution
 - Else
 - Write loop start
 - Strip off outer dependence level
 - Goto 1 with SCC as program
 - Write loop end

\[\text{loop will be sequentialised}\]
Vectorisation algorithm
Review: strongly connected components

Strongly connected
A graph is **strongly connected** if every vertex is reachable from every other vertex

Strongly connected components (SCCs)
SCCs partition a graph into strongly connected subgraphs
Maximal SCCs are largest possible

What are the SCCs?

^2Use Tarjan’s algorithm
Vectorisation algorithm
Review: strongly connected components

Strongly connected
A graph is **strongly connected** if every vertex is reachable from every other vertex

Strongly connected components (SCCs)
SCCs partition a graph into strongly connected subgraphs\(^2\)
Maximal SCCs are largest possible

What are the SCCs?

\(^2\)Use Tarjan’s algorithm
Vectorisation algorithm
Review: topological sort

Topological sort of acyclic directed graph

Linear ordering, \(\langle_{\text{topo}} \) of nodes such that if there is edge \((u, v)\), then \(u <_{\text{topo}} v \).

Maximal SCC graphs are acyclic directed

What is the topological sort?
Vectorisation algorithm
Review: topological sort

Topological sort of acyclic directed graph

Linear ordering, \prec_{topo} of nodes such that if there is edge (u, v), then $u \prec_{\text{topo}} v$.

Maximal SCC graphs are acyclic directed

What is the topological sort?
Vectorisation algorithm
Review: dependence graphs

Flow (True) RAW hazard
$S_1: a = S_2: a = a$
Denoted $S_2 \delta S_1$

Anti WAR hazard
$S_1: = a S_2: a =$
Denoted $S_2 \delta^{-1} S_1$

Output WAW hazard
$S_1: a = S_2: a =$
Denoted $S_2 \delta^0 S_1$

Level of loop carried dependence

Level of loop carried dependence is the index of the left-most non “=” in direction vector.
Written as subscript, e.g. δ_1 for $(<,=,=)$, δ_3^{-1} for $(=,=,>)$.
Infinity for in same loop, e.g. δ_∞ for $(=,=,=)$
Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
 | | $x(i) = y(i) + 10$
 | | Do $j = 1,100$
 | S_2 | $b(j) = a(j,n)$
 | | Do $k = 1,100$
 | S_3 | $a(j+1,k) = b(j)+c(j,k)$
 | | Enddo
 | S_4 | $y(i+j) = a(j+1,n)$
 | | Enddo
 | | Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

$1 \leq i_r \leq 100, 1 \leq i_w \leq 100, 1 \leq j_w \leq 100$

$i_w + j_w = i_r$

Has solutions and j_w always positive, so $i_w < i_r \Rightarrow$ direction ($<$)

Loop carried flow dependence, level one (δ_1)
Vectorisation algorithm
Example

Do \(i = 1,100 \)
\[x(i) = y(i) + 10 \]

Do \(j = 1,100 \)
\[b(j) = a(j,n) \]

Do \(k = 1,100 \)
\[a(j+1,k) = b(j)+c(j,k) \]
Enddo

\[y(i+j) = a(j+1,n) \]
Enddo
Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
 | $x(i) = y(i) + 10$
 | Do $j = 1,100$
 | S_2
 | $b(j) = a(j,n)$
 | Do $k = 1,100$
 | S_3
 | $a(j+1,k) = b(j) + c(j,k)$
 | Enddo
 | S_4
 | $y(i+j) = a(j+1,n)$
 | Enddo
 | Enddo |

Clearly direction for j loop is $=$. For i loop, i is not in either array subscript, so \ast. So, direction is $(\ast, =)$ or $\{ (<, =), (\ast, =), (> , =) \}$ or $\delta_1, \delta_\infty, \delta_1^{-1}$.
Vectorisation algorithm

Example

Do i = 1,100
 \(x(i) = y(i) + 10 \)
 Do j = 1,100
 \(b(j) = a(j,n) \)
 Do k = 1,100
 \(a(j+1,k) = b(j) + c(j,k) \)
 Enddo
 Enddo
 Enddo
Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

\[
\begin{align*}
\text{Do } i &= 1,100 \\
S_1 & \quad x(i) = y(i) + 10 \\
\text{Do } j &= 1,100 \\
S_2 & \quad b(j) = a(j,n) \\
\text{Do } k &= 1,100 \\
S_3 & \quad a(j+1,k) = b(j)+c(j,k) \\
\text{Enddo} & \\
S_4 & \quad y(i+j) = a(j+1,n) \\
\text{Enddo} & \\
\text{Enddo} &
\end{align*}
\]

\begin{align*}
1 \leq i_r, j_r, i_w, j_w, k_w &\leq 100, n \in \mathbb{N} \\
 j_w + 1 = j_r, k_w = n &
\end{align*}

Has solutions (assuming \(n \) in range) and \(j_w < j_r \Rightarrow \text{direction } (\ast, <) \)

Directions \(\{(<, <), (=, <), (> ,<)\} \) or \(\delta_1, \delta_2, \delta^{r-1}_1 \)
Vectorisation algorithm

Example

Do $i = 1,100$

$x(i) = y(i) + 10$

Do $j = 1,100$

$b(j) = a(j,n)$

Do $k = 1,100$

$a(j+1,k) = b(j)+c(j,k)$

Enddo

$y(i+j) = a(j+1,n)$

Enddo

Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

| \(S_1\) | Do \(i = 1,100\)
| \(x(i) = y(i) + 10\)
| Do \(j = 1,100\)
| \(b(j) = a(j,n)\)
| Do \(k = 1,100\)
| \(a(j+1,k) = b(j) + c(j,k)\)
| Enddo
| \(y(i+j) = a(j+1,n)\)
| Enddo
| Enddo |

Directions \(\{(<,=),(=,=),(>,=)\}\) or \(\delta_1, \delta_\infty, \delta_1^{-1}\)
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j) + c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Output dependence on itself, at level 1 because i unconstrained.
Vectorisation algorithm

Example

\[S_1 \]
Do \(i = 1,100 \)
\[
 x(i) = y(i) + 10
\]
Do \(j = 1,100 \)
\[S_2 \]
\[
 b(j) = a(j,n)
\]
Do \(k = 1,100 \)
\[S_3 \]
a\(_{j+1,k}\) = b\(_j\) + c\(_{j,k}\)
Enddo
\[S_4 \]
y\(_{i+j}\) = a\(_{j+1,n}\)
Enddo
Enddo

Label and edge for this dependence?
Example

S_1	Do $i = 1,100$
	$x(i) = y(i) + 10$
	Do $j = 1,100$
S_2	$b(j) = a(j,n)$
	Do $k = 1,100$
S_3	$a(j+1,k) = b(j) + c(j,k)$
	Enddo
S_4	$y(i+j) = a(j+1,n)$
	Enddo
	Enddo

Output dependence on itself, at level 1 because i unconstrained.
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j) + c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo

Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
| | | $x(i) = y(i) + 10$
| | | Do $j = 1,100$
| S_2 | | $b(j) = a(j,n)$
| | | Do $k = 1,100$
| S_3 | | $a(j+1,k) = b(j)+c(j,k)$
| | | Enddo
| S_4 | | $y(i+j) = a(j+1,n)$
| | | Enddo
| | | Enddo

Output dependence on itself, at level 1 because i unconstrained.
Vectorisation algorithm

Example

	Do $i = 1,100$
S_1	$x(i) = y(i) + 10$
	Do $j = 1,100$
S_2	$b(j) = a(j,n)$
	Do $k = 1,100$
S_3	$a(j+1,k) = b(j) + c(j,k)$
	Enddo
S_4	$y(i+j) = a(j+1,n)$
	Enddo
	Enddo

All the edges
Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| \(S_1\) | Do \(i = 1,100\)
| | \(x(i) = y(i) + 10\)
| | Do \(j = 1,100\)
| \(S_2\) | \(b(j) = a(j,n)\)
| | Do \(k = 1,100\)
| \(S_3\) | \(a(j+1,k) = b(j)+c(j,k)\)
| | Enddo
| \(S_4\) | \(y(i+j) = a(j+1,n)\)
| | Enddo
| | Enddo

What are the SCCs?
Vectorisation algorithm

Example

Do $i = 1,100$

S_1

$x(i) = y(i) + 10$

Do $j = 1,100$

S_2

$b(j) = a(j,n)$

Do $k = 1,100$

S_3

$a(j+1,k) = b(j) + c(j,k)$

Enddo

S_4

$y(i+j) = a(j+1,n)$

Enddo

Enddo
Vectorise Algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_1, S_2, S_3, S_4\}, 1)

SCCs and topological sort gives
\{S_2, S_3, S_4\}, \{S_1\}

Do i = 1, 100
 Vectorise(\{S_2, S_3, S_4\}, 2)
Enddo

Vectorise(\{S_1\}, 1)
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_1, S_2, S_3, S_4\}, 1)

SCCs and topological sort gives
\{S_2, S_3, S_4\}, \{S_1\}

Do i = 1, 100
 Vectorise(\{S_2, S_3, S_4\}, 2)
Enddo

Vectorise(\{S_1\}, 1)
Vectorisation algorithm
Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_1\}, 1)

Distribute

Do \ i = 1, 100
 Vectorise(\{S_2, S_3, S_4\}, 2)
Enddo

Do \ i = 1, 100
 x(i) = y(i) + 10
Enddo
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise($\{S_1\}$, 1)

Vectorise

Do $i = 1, 100$

Vectorise($\{S_2, S_3, S_4\}$, 2)

Enddo

$x(1:100) = y(1:100) + 10$
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise($\{S_1\}$, 1)

Do $i = 1, 100$

 Vectorise($\{S_2, S_3, S_4\}$, 2)

Enddo

$x(1:100) = y(1:100) + 10$
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Vectorise(\{S_4\}, 2)
Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Vectorise(\{S_4\}, 2)
Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise({S_2, S_3, S_4}, 2)

SCCs and topological sort gives
{S_2, S_3}, {S_4}

Do i = 1, 100
 Do j = 1, 100
 Vectorise({S_2, S_3}, 3)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\(\{S_2, S_3, S_4\}\), 2)

SCCs and topological sort gives
\(\{S_2, S_3\}\), \(\{S_4\}\)

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\(\{S_2, S_3\}\), 3)
 Enddo
 Enddo
y(i+1:i+100) = a(2:101,N)
Enddo
x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise({S₂, S₃}, 3)

SCCs and topological sort gives
{S₂}, {S₃}

Do i = 1, 100
 Do j = 1, 100
 Vectorise({S₂}, 3)
 Vectorise({S₃}, 3)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo

x(1:100) = y(1:100) + 10
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise({S_2, S_3}, 3)

SCCs and topological sort gives
{S_2}, {S_3}

Do i = 1, 100
 Do j = 1, 100
 b(j) = a(j,n)
 a(j+1,1:100)=b(j)+c(j,1:100)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo
x(1:100) = y(1:100) + 10

Note S_2 not in depth 3 – leaves single statement
Dependency reducing transforms

- What happened if no vectorisable regions found?
- Try transformations
Dependency reducing transforms

Loop Interchange

Loop interchange: move loop carried dependences outermost

Do j = 1, M
 Do i = 1, N
 a(i+1,j) = a(i,j) + c
 Enddo
Enddo

Distance [0,1]. Even if j run sequentially, loop carried dep i not vectorisable.

Do i = 1, N
 Do j = 1, M
 a(i+1,j) = a(i,j) + c
 Enddo
Enddo

Now [1,0] - inner loop vectorisable

Do i = 1, N
 a(i+1,1:N) = a(i,1:N) + c
Enddo
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example
Do i = 1, N
 t = a(i)
 a(i) = b(i)
 b(i) = t
Enddo

Where are the dependences?
(Ignore output dependences)
Dependency reducing transforms

Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example

Do i = 1, N
 t = a(i)
 a(i) = b(i)
 b(i) = t
Enddo

Cycle in dependence graph prevents distribution and vectorisation
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example
Do i = 1, N
 tt(i) = a(i)
 a(i) = b(i)
 b(i) = tt(i)
Enddo

Easily distributed and vectorised

Anti dependence removed
Dependency reducing transforms
Scalar expansion

May fail to remove dependence

Original
Do i = 1, N
 t = t + a(i) + a(i+1)
a(i) = t
Enddo

Still cyclic
_tt(0) = t Do i = 1, N
 _tt(i) = t(i-1) + a(i) + a(i+1)
a(i) = _tt(i)
Enddo
T = _tt(N)

- Whether or not scalar expansion can break cycles depends on whether it is a covering definition (see CMA)
- In practise recurrence on the scalar is the biggest problem.

Covering definition
Definition X of scalar S covers the loop, if no earlier definition of S in the loop could reach a use after X
Dependency reducing transforms
Scalar renaming

Can be used to eliminate loop independent output and anti-dependences

Original
Do i = 1, N
 t = a(i) + b(i)
 c(i) = t + t
 t = d(i) - b(i)
 a(i+1) = t * t
Enddo

Renamed
Do i = 1, N
 t1 = a(i) + b(i)
 c(i) = t1 + t1
 t2 = d(i) - b(i)
 a(i+1) = t2 * t2
Enddo

Scalar expansion, loop distribution and vectorisation now possible
Dependency reducing transforms
Node splitting

Scalar expansion and renaming cannot eliminate all cycles

Original
Do i = 1, N
a(i) = x(i+1) + x(i)
x(i+1) = b(i) + t
Enddo

Renaming does not break cycle. Critical anti-dependence
Dependency reducing transforms
Node splitting

Scalar expansion and renaming cannot eliminate all cycles

Split

\[
\begin{align*}
 \text{Do } i &= 1, N \\
 xx(i) &= x(i+1) \\
 a(i) &= xx(i) + x(i) \\
 x(i+1) &= b(i) + t
\end{align*}
\]

Enddo

- Cycle broken. Vectorisable with statement reordering: \(S_0, S_2, S_1 \)
- NP-Complete to find minimal critical dependences
Summary

- Vector loops
- Loop distribution
- Dependence condition for vectorisation
- Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange
- Scalar Expansion, Renaming and Node splitting
- Layout in memory important too!
The biggest revolution in the technological landscape for fifty years
Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk