Compiler Optimisation
10 – Vectorisation

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2018
This lecture:

- Vector loops - how to write loops in a vector format
- Loop distribution + statement reordering: basic vectorisation
- Dependence condition for vectorisation: Based on loop level
- Kennedy’s Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange: Move vector loops innermost
- Scalar Expansion, Renaming and Node splitting. Overcoming cycles
What is vectorisation?

- Generalise operations on scalars to apply transparently to vectors, matrices, etc
- Architectures provide vector units, compute multiple elements at once
- Single instruction multiple data (SIMD)
Vectorisation

Vector code

- Use Fortran 90 vector notation to express vectorised loops.
- Triple notation used $x(start:finish:step)$ to represent a vector in x
- Vectorisation depends on loop dependence

No loop carried dependence

```
Do i = 1, N
    x(i) = x(i) + c
Enddo

Vectorisable
x(1:N) = x(1:N) + c
```

Loop carried dependence

```
Do i = 1, N
    x(i+1) = x(i) + c
Enddo

Not vectorisable
x(2:N+1) = x(1:N) + c
Reads $x$ at once
```
Vector registers are a fixed size. Need to fit code to registers

Original

```plaintext
Do i = 1, N
    x(i) = x(i) + c
Enddo
```

Strip-mined

```plaintext
Do i = 1, N, s
    Do ii = i, i+s-1
        x(ii) = x(ii) + c
    Enddo
Enddo
```

Vectorised

```plaintext
Do i = 1, N, s
    x(i:i+s-1) = x(i:i+s-1) + c
Enddo
```
Vectorisation
Loop distribution + statement reordering

Standard approach to isolating statements within a loop for later vectorisation

Original
Do i = 1, N
 a(i+1) = b(i) + c
 d(i) = a(i) + e
Enddo

Distributed
Do i = 1, N
 a(i+1) = b(i) + c
Enddo
Do i = 1, N
 d(i) = a(i) + e
Enddo

Vectorised
a(2:N+1) = b(1:N) + c
d(1:N) = a(1:N) + e

Cyclic dependence prevent distribution and hence vectorisation.
Vectorised
Inner loop vectorisation

Do $i = 1, N$
 Do $j = 1, M$
 $a(i+1,j) = a(i,j) + c$
 Enddo
Enddo

- Cannot vectorise as dependence $(1,0)$.
- If outer loop run sequential then can vectorise inner loop with dependence (0).
- Generalises to nested loops.

Do $i = 1, N$
 $a(i+1,1:M) = a(i,1:M) + c$
Enddo
Vectorisation algorithm

Simple description of CMA algorithm. Read CMA!

1. Form dependence graph
2. Strongly Connected Component (SCC) identification (cycles)
3. Sort SCCs topologically
4. For each SCC
 - If weakly connected then
 - Vectorise using loop distribution
 - Else
 - Write loop start
 - Strip off outer dependence level
 - Goto 1 with SCC as program
 - Write loop end

\(^1\)loop will be sequentialised
A graph is **strongly connected** if every vertex is reachable from every other vertex.

Strongly connected components (SCCs)

SCCs partition a graph into strongly connected subgraphs. Maximal SCCs are largest possible.

What are the SCCs? **Use Tarjan’s algorithm**

2 Use Tarjan’s algorithm
Vectorisation algorithm
Review: strongly connected components

<table>
<thead>
<tr>
<th>Strongly connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>A graph is strongly connected if every vertex is reachable from every other vertex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strongly connected components (SCCs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCs partition a graph into strongly connected subgraphs(^2)</td>
</tr>
<tr>
<td>Maximal SCCs are largest possible</td>
</tr>
</tbody>
</table>

What are the SCCs?

![Diagram showing strongly connected components](image)

\(^2\)Use Tarjan’s algorithm
Topological sort of acyclic directed graph

Linear ordering, \(<_{\text{topo}}\) of nodes such that if there is edge \((u, v)\), then \(u <_{\text{topo}} v\).

Maximal SCC graphs are acyclic directed

What is the topological sort?
Vectorisation algorithm
Review: topological sort

Topological sort of acyclic directed graph
Linear ordering, $<_{\text{topo}}$ of nodes such that
if there is edge (u, v), then $u <_{\text{topo}} v$.

Maximal SCC graphs are acyclic directed

What is the topological sort?
Vectorisation algorithm

Review: dependence graphs

<table>
<thead>
<tr>
<th>Flow (True)</th>
<th>Anti</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAW hazard</td>
<td>WAR hazard</td>
<td>WAW hazard</td>
</tr>
<tr>
<td>S_1: $a =$</td>
<td>S_1: $=$ a</td>
<td>S_1: $a =$</td>
</tr>
<tr>
<td>S_2: $= a$</td>
<td>S_2: $a =$</td>
<td>S_2: $a =$</td>
</tr>
</tbody>
</table>

Denoted $S_2 \delta S_1$

Denoted $S_2 \delta^{-1} S_1$

Denoted $S_2 \delta^0 S_1$

Level of loop carried dependence

Level of loop carried dependence is the index of the left-most non "\lll" in direction vector.

Written as subscript, e.g. δ_1 for (\lll, \lll, \lll), δ_3^{-1} for (\lll, \lll, \ggg).

Infinity for in same loop, e.g. δ_∞ for (\lll, \lll, \lll)
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **S₁** | Do i = 1,100
 x(i) = y(i) + 10
 Do j = 1,100 |
| **S₂** | b(j) = a(j,n)
 Do k = 1,100 |
| **S₃** | a(j+1,k) = b(j)+c(j,k)
 Enddo |
| **S₄** | y(i+j) = a(j+1,n)
 Enddo
 Enddo |

Label and edge for this dependence?
Vectorisation algorithm

Example

\begin{align*}
S_1 & \text{ Do } i = 1, 100 \\
& \quad x(i) = y(i) + 10 \\
& \text{ Do } j = 1, 100 \\
S_2 & \quad b(j) = a(j, n) \\
& \text{ Do } k = 1, 100 \\
S_3 & \quad a(j+1, k) = b(j) + c(j, k) \\
& \quad \text{ Enddo} \\
S_4 & \quad y(i+j) = a(j+1, n) \\
& \quad \text{ Enddo} \\
& \text{ Enddo}
\end{align*}

1 \leq i_r \leq 100, 1 \leq i_w \leq 100, 1 \leq j_w \leq 100

i_w + j_w = i_r

Has solutions and \(j_w \) always positive, so \(i_w < i_r \implies \text{ direction (} < \text{)} \)

Loop carried flow dependence, level one \((\delta_1)\)
Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **S_1** | Do i = 1,100
 x(i) = y(i) + 10
 Do j = 1,100
 | **S_2** | b(j) = a(j,n)
 Do k = 1,100
 | **S_3** | a(j+1,k) = b(j)+c(j,k)
 Enddo
 | **S_4** | y(i+j) = a(j+1,n)
 Enddo
 Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Clearly direction for j loop is $=$. For i loop, i is not in either array subscript, so \ast. So, direction is $(\ast, =)$ or $\{(\ast, =), (\ast, =), (\ast, =)\}$ or $\delta_1, \delta_\infty, \delta_1^{-1}$
Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
 | $x(i) = y(i) + 10$
 | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
 | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
 | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
 | Enddo
 | Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

\[\begin{align*}
S_1 & \quad \text{Do } i = 1,100 \\
& \quad x(i) = y(i) + 10 \\
& \quad \text{Do } j = 1,100 \\
& \quad b(j) = a(j,n) \\
& \quad \text{Do } k = 1,100 \\
& \quad a(j+1,k) = b(j) + c(j,k) \\
& \quad \text{Enddo} \\
S_4 & \quad y(i+j) = a(j+1,n) \\
& \quad \text{Enddo} \\
& \quad \text{Enddo}
\end{align*} \]

\[1 \leq i_r, j_r, i_w, j_w, k_w \leq 100, n \in \mathbb{N} \]

\[j_w + 1 = j_r, k_w = n \]

Has solutions (assuming \(n \) in range) and \(j_w < j_r \) \(\Rightarrow \) direction (\(\ast, < \))

Directions \(\{(<, <), (=, <), (> ,<)\} \) or \(\delta_1, \delta_2, \delta_1^{-1} \)
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j) + c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Label and edge for this dependence?
Vectorisation algorithm
Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Do i = 1,100</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>x(i) = y(i) + 10</td>
</tr>
<tr>
<td></td>
<td>Do j = 1,100</td>
</tr>
<tr>
<td>S₂</td>
<td>b(j) = a(j,n)</td>
</tr>
<tr>
<td></td>
<td>Do k = 1,100</td>
</tr>
<tr>
<td>S₃</td>
<td>a(j+1,k) = b(j)+c(j,k)</td>
</tr>
<tr>
<td></td>
<td>Enddo</td>
</tr>
<tr>
<td>S₄</td>
<td>y(i+j) = a(j+1,n)</td>
</tr>
<tr>
<td></td>
<td>Enddo</td>
</tr>
</tbody>
</table>

Directions \{(<, =), (=, =), (> ,=)\} or \(\delta_1, \delta_\infty, \delta_1^{-1}\)
Example

<table>
<thead>
<tr>
<th>Step</th>
<th>Code</th>
</tr>
</thead>
</table>
| \(S_1 \) | \begin{align*}
 & \text{Do } i = 1,100 \\
 & \quad x(i) = y(i) + 10 \\
 & \text{Do } j = 1,100 \\
 & \quad b(j) = a(j,n) \\
 & \text{Do } k = 1,100 \\
 & \quad a(j+1,k) = b(j)+c(j,k) \\
 & \text{Enddo} \\
 & y(i+j) = a(j+1,n) \\
 & \text{Enddo} \\
 & \text{Enddo}
\end{align*} |

Label and edge for this dependence?
Vectorisation algorithm

Example

\begin{align*}
S_1 & : \quad \text{Do } i = 1,100 \\
& \quad x(i) = y(i) + 10 \\
& \quad \text{Do } j = 1,100 \\
S_2 & : \quad b(j) = a(j,n) \\
& \quad \text{Do } k = 1,100 \\
S_3 & : \quad a(j+1,k) = b(j) + c(j,k) \\
& \quad \text{Enddo} \\
S_4 & : \quad y(i+j) = a(j+1,n) \\
& \quad \text{Enddo} \\
& \quad \text{Enddo}
\end{align*}

Output dependence on itself, at level 1 because \(i \) unconstrained.
Example

| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

\begin{itemize}
\item \textit{S}_1 \quad \text{Do } i = 1,100 \\
\quad x(i) = y(i) + 10 \\
\quad \text{Do } j = 1,100 \\
\item \textit{S}_2 \quad b(j) = a(j,n) \\
\quad \text{Do } k = 1,100 \\
\item \textit{S}_3 \quad a(j+1,k) = b(j)+c(j,k) \\
\quad \text{Enddo} \\
\item \textit{S}_4 \quad y(i+j) = a(j+1,n) \\
\quad \text{Enddo} \\
\quad \text{Enddo}
\end{itemize}

Output dependence on itself, at level 1 because \(i \) unconstrained.
Vectorisation algorithm

Example

Example

Do i = 1,100
 x(i) = y(i) + 10
 Do j = 1,100
 b(j) = a(j,n)
 Do k = 1,100
 a(j+1,k) = b(j) + c(j,k)
 Enddo
 Enddo
 y(i+j) = a(j+1,n)
 Enddo
Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

\[
\begin{align*}
S_1 & : \text{Do } i = 1,100 \\
& \quad x(i) = y(i) + 10 \\
& \quad \text{Do } j = 1,100 \\
S_2 & : \quad b(j) = a(j,n) \\
& \quad \text{Do } k = 1,100 \\
S_3 & : \quad a(j+1,k) = b(j)+c(j,k) \\
& \quad \text{Enddo} \\
S_4 & : \quad y(i+j) = a(j+1,n) \\
& \quad \text{Enddo} \\
& \quad \text{Enddo}
\end{align*}
\]

Output dependence on itself, at level 1 because \(i \) unconstrained.
Vectorisation algorithm

Example

Example	Do $i = 1,100$
S_1	$x(i) = y(i) + 10$
	Do $j = 1,100$
S_2	$b(j) = a(j,n)$
	Do $k = 1,100$
S_3	$a(j+1,k) = b(j) + c(j,k)$
	Enddo
S_4	$y(i+j) = a(j+1,n)$
	Enddo
	Enddo

All the edges
Vectorisation algorithm

Example

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | Do $i = 1,100$
| S_1 | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

What are the SCCs?
Vectorisation algorithm

Example

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| \(S_1 \) | \(\text{Do } i = 1,100 \)
 \(x(i) = y(i) + 10 \)
 \(\text{Do } j = 1,100 \)
 \(b(j) = a(j,n) \)
 \(\text{Do } k = 1,100 \)
 \(a(j+1,k) = b(j) + c(j,k) \)
 Enddo |
| \(S_2 \) | y\((i+j) = a(j+1,n) \)
 Enddo
 Enddo |
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_1, S_2, S_3, S_4\}, 1)

SCCs and topological sort gives \{S_2, S_3, S_4\}, \{S_1\}

Do i = 1, 100

Vectorise(\{S_2, S_3, S_4\}, 2)

Enddo

Vectorise(\{S_1\}, 1)
Vectorisation algorithm
Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_1, S_2, S_3, S_4\}, 1)

SCCs and topological sort gives
\{S_2, S_3, S_4\}, \{S_1\}

Do i = 1, 100

Vectorise(\{S_2, S_3, S_4\}, 2)

Enddo

Vectorise(\{S_1\}, 1)
Vectorisation algorithm
Example

\[\text{Vectorise}(\text{Region}, \text{LoopDepth}, \text{DDG}) \]

Vectorise\{S_1\}, 1

Distribute

\[
\text{Do } i = 1, 100 \\
\quad \text{Vectorise}\{S_2, S_3, S_4\}, 2 \\
\text{Enddo}
\]

\[
\text{Do } i = 1, 100 \\
\quad x(i) = y(i) + 10 \\
\text{Enddo}
\]
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_1\}, 1)

Vectorise

Do i = 1, 100
 Vectorise(\{S_2, S_3, S_4\}, 2)
Enddo

x(1:100) = y(1:100) + 10
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(
{{S_1}}, 1
)

Vectorise

Do i = 1, 100

Vectorise(
{{S_2, S_3, S_4}}, 2
)

Enddo

x(1:100) = y(1:100) + 10
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise({S_2, S_3, S_4}, 2)

SCCs and topological sort gives
{S_2, S_3}, {S_4}

Do i = 1, 100
 Do j = 1, 100
 Vectorise({S_2, S_3}, 3)
 Enddo
 Vectorise({S_4}, 2)
Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Vectorise(\{S_4\}, 2)
Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise($\{S_2, S_3, S_4\}$, 2)

SCCs and topological sort gives
$\{S_2, S_3\}, \{S_4\}$

Do i = 1, 100
 Do j = 1, 100
 Vectorise($\{S_2, S_3\}$, 3)
 Enddo
 Enddo
y(i+1:i+100) = a(2:101,N)
Enddo
x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Enddo
y(i+1:i+100) = a(2:101,N)
Enddo
x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise({S₂, S₃}, 3)

SCCs and topological sort gives
{S₂}, {S₃}

Do i = 1, 100
 Do j = 1, 100
 Vectorise({S₂}, 3)
 Vectorise({S₃}, 3)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo

x(1:100) = y(1:100) + 10
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3\}, 3)

SCCs and topological sort gives \{S_2\}, \{S_3\}

Do \ i = 1, 100
 Do \ j = 1, 100
 b(j) = a(j,n)
 a(j+1,1:100) = b(j) + c(j,1:100)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo

x(1:100) = y(1:100) + 10

Note \ S_2 \ not in depth 3 – leaves single statement
Dependency reducing transforms

- What happened if no vectorisable regions found?
- Try transformations
Dependency reducing transforms

Loop Interchange

Loop interchange: move loop carried dependences outermost

\[
\begin{align*}
\text{Do } & j = 1, M \\
\text{Do } & i = 1, N \\
& a(i+1,j) = a(i,j) + c \\
& \text{Enddo} \\
& \text{Enddo} \\
\end{align*}
\]

Distance [0,1]. Even if \(j \) run sequentially, loop carried dep \(i \) not vectorisable.

\[
\begin{align*}
\text{Do } & i = 1, N \\
\text{Do } & j = 1, M \\
& a(i+1,j) = a(i,j) + c \\
& \text{Enddo} \\
& \text{Enddo} \\
\end{align*}
\]

Now [1,0] - inner loop vectorisable

\[
\begin{align*}
\text{Do } & i = 1, N \\
& a(i+1,1:N) = a(i,1:N) + c \\
& \text{Enddo} \\
\end{align*}
\]
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example
Do i = 1, N
 t = a(i)
 a(i) = b(i)
 b(i) = t
Enddo

Where are the dependences?
(Ignore output dependences)
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example
Do i = 1, N
 t = a(i)
 a(i) = b(i)
 b(i) = t
Enddo

Cycle in dependence graph prevents distribution and vectorisation
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example
Do $i = 1, N$
 $tt(i) = a(i)$
 $a(i) = b(i)$
 $b(i) = tt(i)$
Enddo
$t = tt(N)$

Easily distributed and vectorised

Anti dependence removed
Dependency reducing transforms
Scalar expansion

May fail to remove dependence

Original
Do i = 1, N
 t = t + a(i) + a(i+1)
a(i) = t
Enddo

Still cyclic
tt(0) = t Do i = 1, N
 tt(i) = t(i-1) + a(i) + a(i+1)
a(i) = tt(i)
Enddo
 t = tt(N)

- Whether or not scalar expansion can break cycles depends on whether it is a covering definition (see CMA)
- In practise recurrence on the scalar is the biggest problem.

Covering definition
Definition X of scalar S covers the loop, if no earlier definition of S in the loop could reach a use after X
Dependency reducing transforms
Scalar renaming

Can be used to eliminate loop independent output and anti-dependences

<table>
<thead>
<tr>
<th>Original</th>
<th>Renamed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do $i = 1, N$</td>
<td>Do $i = 1, N$</td>
</tr>
<tr>
<td>$t = a(i) + b(i)$</td>
<td>$t1 = a(i) + b(i)$</td>
</tr>
<tr>
<td>$c(i) = t + t$</td>
<td>$c(i) = t1 + t1$</td>
</tr>
<tr>
<td>$t = d(i) - b(i)$</td>
<td>$t2 = d(i) - b(i)$</td>
</tr>
<tr>
<td>$a(i+1) = t * t$</td>
<td>$a(i+1) = t2 * t2$</td>
</tr>
<tr>
<td>Enddo</td>
<td>Enddo</td>
</tr>
</tbody>
</table>

Scalar expansion, loop distribution and vectorisation now possible
Dependency reducing transforms
Node splitting

Scalar expansion and renaming cannot eliminate all cycles

Original

\[
\begin{align*}
 \text{Do } i &= 1, N \\
 a(i) &= x(i+1) + x(i) \\
 x(i+1) &= b(i) + t
\end{align*}
\]

Enddo

- Renaming does not break cycle. Critical anti-dependence
Dependency reducing transforms
Node splitting

Scalar expansion and renaming cannot eliminate all cycles

Split

Do \(i = 1, N \)

\[
\begin{align*}
x_{xx}(i) & = x(i+1) \\
a(i) & = xx(i) + x(i) \\
x(i+1) & = b(i) + t \\
\end{align*}
\]
Enddo

Cycle broken. Vectorisable with statement reordering: \(S_0, S_2, S_1 \)

NP-Complete to find minimal critical dependences
Summary

- Vector loops
- Loop distribution
- Dependence condition for vectorisation
- Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange
- Scalar Expansion, Renaming and Node splitting
- Layout in memory important too!
The biggest revolution in the technological landscape for fifty years

Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk