Compiler Optimisation

10 – Vectorisation

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2017
This lecture:

- Vector loops - how to write loops in a vector format
- Loop distribution + statement reordering: basic vectorisation
- Dependence condition for vectorisation: Based on loop level
- Kennedy’s Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange: Move vector loops innermost
- Scalar Expansion, Renaming and Node splitting. Overcoming cycles
Vectorisation
What is vectorisation?

- Generalise operations on scalars to apply transparently to vectors, matrices, etc
- Architectures provide vector units, compute multiple elements at once
- Single instruction multiple data (SIMD)
Vectorisation

Vector code

- Use Fortran 90 vector notation to express vectorised loops.
- Triple notation used \(x(\text{start:finish:step}) \) to represent a vector in \(x \)
- Vectorisation depends on loop dependence

No loop carried dependence

Do \(i = 1, N \)

\[x(i) = x(i) + c \]

Enddo

Vectorisable

\[x(1:N) = x(1:N) + c \]

Loop carried dependence

Do \(i = 1, N \)

\[x(i+1) = x(i) + c \]

Enddo

Not vectorisable

\[x(2:N+1) = x(1:N) + c \]

Reads \(x \) at once
Vectorisation
Varying vector length

Vector registers are a fixed size. Need to fit code to registers

Original
Do i = 1, N
 x(i) = x(i) + c
Enddo

Strip-mined
Do i = 1, N, s
 Do ii = i, i+s-1
 x(ii) = x(ii) + c
 Enddo
Enddo

Vectorised
Do i = 1, N, s
 x(i:i+s-1) = x(i:i+s-1) + c
Enddo
Vectorisation
Loop distribution + statement reordering

Standard approach to isolating statements within a loop for later vectorisation

Original

\[
\text{Do } i = 1, N \\
\quad a(i+1) = b(i) + c \\
\quad d(i) = a(i) + e \\
\text{Enddo}
\]

Distributed

\[
\text{Do } i = 1, N \\
\quad a(i+1) = b(i) + c \\
\quad \text{Enddo} \\
\text{Do } i = 1, N \\
\quad d(i) = a(i) + e \\
\text{Enddo}
\]

Vectorised

\[
a(2:N+1) = b(1:N) + c \\
d(1:N) = a(1:N) + e
\]

Cyclic dependence prevent distribution and hence vectorisation.
Do i = 1, N
 Do j = 1, M
 a(i+1,j) = a(i,j) + c
 Enddo
Enddo

- Cannot vectorise as dependence (1,0).
- If outer loop run sequential then can vectorise inner loop with dependence (0).
- Generalises to nested loops.

Do i = 1, N
 a(i+1,1:M) = a(i,1:M) + c
Enddo
Vectorisation algorithm

Simple description of CMA algorithm. **Read CMA!**

1. Form dependence graph
2. Strongly Connected Component (SCC) identification (cycles)
3. Sort SCCs topologically
4. For each SCC
 - If weakly connected then
 - Vectorise using loop distribution
 - Else
 - Write loop start
 - Strip off outer dependence level
 - Goto 1 with SCC as program
 - Write loop end

\(^1\)loop will be sequentialised
A graph is **strongly connected** if every vertex is reachable from every other vertex.

Strongly connected components (SCCs)

SCCs partition a graph into strongly connected subgraphs. Maximal SCCs are largest possible.

What are the SCCs?

Use Tarjan’s algorithm.
Vectorisation algorithm
Review: strongly connected components

Strongly connected
A graph is *strongly connected* if every vertex is reachable from every other vertex

Strongly connected components (SCCs)
SCCs partition a graph into strongly connected subgraphs
Maximal SCCs are largest possible

What are the SCCs?

\(^2\) Use Tarjan’s algorithm
Vectorisation algorithm
Review: topological sort

Topological sort of acyclic directed graph
Linear ordering, \(<_{\text{topo}} \) of nodes such that if there is edge \((u, v)\), then \(u <_{\text{topo}} v \).

Maximal SCC graphs are acyclic directed

What is the topological sort?
Vectorisation algorithm
Review: topological sort

Topological sort of acyclic directed graph
Linear ordering, \lt_{topo} of nodes such that if there is edge (u, v), then $u \lt_{\text{topo}} v$.

Maximal SCC graphs are acyclic directed

What is the topological sort?
Vectorisation algorithm
Review: dependence graphs

Flow (True) RAW hazard
$S_1: a =$
$S_2: a =$
Denoted $S_2 \delta S_1$

Anti WAR hazard
$S_1: = a$
$S_2: a =$
Denoted $S_2 \delta^{-1} S_1$

Output WAW hazard
$S_1: a =$
$S_2: a =$
Denoted $S_2 \delta^0 S_1$

Level of loop carried dependence
Level of loop carried dependence is the index of the left-most non “=” in direction vector.
Written as subscript, e.g. δ_1 for $(<,=,=)$, δ_3^{-1} for $(=,=,>)$.
Infinity for in same loop, e.g. δ_∞ for $(=,=,=)$.
Vectorisation algorithm

Example

Do \(i = 1,100 \)
\[x(i) = y(i) + 10 \]
Do \(j = 1,100 \)
\[b(j) = a(j,n) \]
Do \(k = 1,100 \)
\[a(j+1,k) = b(j)+c(j,k) \]
Enddo
\[y(i+j) = a(j+1,n) \]
Enddo
Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
 | $x(i) = y(i) + 10$
 | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
 | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j) + c(j,k)$
 | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
 | Enddo
 | Enddo

$1 \leq i_r \leq 100, 1 \leq i_w \leq 100, 1 \leq j_w \leq 100$

$$i_w + j_w = i_r$$

Has solutions and j_w always positive, so $i_w < i_r \Rightarrow$ direction ($<$)

Loop carried flow dependence, level one (δ_1)
Vectorisation algorithm

Example

- **S_1**
 - Do $i = 1,100$
 - $x(i) = y(i) + 10$
 - Do $j = 1,100$

- **S_2**
 - $b(j) = a(j,n)$
 - Do $k = 1,100$

- **S_3**
 - $a(j+1,k) = b(j) + c(j,k)$
 - Enddo

- **S_4**
 - $y(i+j) = a(j+1,n)$
 - Enddo
 - Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

```
Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S1 | Do i = 1,100
|    | x(i) = y(i) + 10
|    | Do j = 1,100
| S2 | b(j) = a(j,n)
|    | Do k = 1,100
| S3 | a(j+1,k) = b(j)+c(j,k)
|    | Enddo
| S4 | y(i+j) = a(j+1,n)
|    | Enddo
Enddo
```

Clearly direction for j loop is =.

For i loop, i is not in either array subscript, so *.

So, direction is (*, =) or {(<, =), (=, =), (>, =)} or δ₁, δ∞, δ⁻¹₁
Vectorisation algorithm

Example

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| \(S_1 \) | \(\text{Do } i = 1,100 \)
 \(x(i) = y(i) + 10 \)
 \(\text{Do } j = 1,100 \) |
| \(S_2 \) | \(b(j) = a(j,n) \)
 \(\text{Do } k = 1,100 \) |
| \(S_3 \) | \(a(j+1,k) = b(j)+c(j,k) \)
 \(\text{Enddo} \) |
| \(S_4 \) | \(y(i+j) = a(j+1,n) \)
 \(\text{Enddo} \)
 \(\text{Enddo} \) |

Label and edge for this dependence?
Vectorisation algorithm

Example

1 ≤ i_r, j_r, i_w, j_w, k_w ≤ 100, n ∈ N

j_w + 1 = j_r, k_w = n

Has solutions (assuming n in range) and j_w < j_r ⇒ direction (*, <)

Directions {(<, <), (=, <), (> ,<)} or δ_1, δ_2, δ_1^{-1}
Vectorisation algorithm
Example

Example

Do $i = 1,100$

S_1

$x(i) = y(i) + 10$

Do $j = 1,100$

S_2

$b(j) = a(j,n)$

Do $k = 1,100$

S_3

$a(j+1,k) = b(j) + c(j,k)$

Enddo

S_4

$y(i+j) = a(j+1,n)$

Enddo

Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

Do i = 1,100
x(i) = y(i) + 10
Do j = 1,100
b(j) = a(j,n)
Do k = 1,100
a(j+1,k) = b(j)+c(j,k)
Enddo
S4
y(i+j) = a(j+1,n)
Enddo
Enddo

Directions \{(<,=),(=,=),(>,=)\} or \delta_1, \delta_\infty, \delta_1^{-1}
Vectorisation algorithm

Example

Do $i = 1,100$

S_1

$x(i) = y(i) + 10$

Do $j = 1,100$

S_2

$b(j) = a(j,n)$

Do $k = 1,100$

S_3

$a(j+1,k) = b(j) + c(j,k)$

Enddo

S_4

$y(i+j) = a(j+1,n)$

Enddo

Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

Do i = 1,100
\[x(i) = y(i) + 10 \]
Do j = 1,100
\[b(j) = a(j,n) \]
Do k = 1,100
\[a(j+1,k) = b(j)+c(j,k) \]
Enddo

y(i+j) = a(j+1,n)
Enddo
Enddo

Output dependence on itself, at level 1 because i unconstrained.
Vectorisation algorithm

Example

Do i = 1,100
 x(i) = y(i) + 10
 Do j = 1,100
 b(j) = a(j,n)
 Do k = 1,100
 a(j+1,k) = b(j)+c(j,k)
 Enddo
 Enddo
 y(i+j) = a(j+1,n)
Enddo
Enddo

Label and edge for this dependence?
Example

\[\text{Do } i = 1,100 \]
\[x(i) = y(i) + 10 \]
\[\text{Do } j = 1,100 \]
\[b(j) = a(j,n) \]
\[\text{Do } k = 1,100 \]
\[a(j+1,k) = b(j)+c(j,k) \]
\[\text{Enddo} \]
\[S_4 \]
\[y(i+j) = a(j+1,n) \]
\[\text{Enddo} \]
\[\text{Enddo} \]

Output dependence on itself, at level 1 because \(i \) unconstrained.
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j)+c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Label and edge for this dependence?
Vectorisation algorithm

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_1 | Do $i = 1,100$
| | $x(i) = y(i) + 10$
| | Do $j = 1,100$
| S_2 | $b(j) = a(j,n)$
| | Do $k = 1,100$
| S_3 | $a(j+1,k) = b(j) + c(j,k)$
| | Enddo
| S_4 | $y(i+j) = a(j+1,n)$
| | Enddo
| | Enddo

Output dependence on itself, at level 1 because i unconstrained.
Vectorisation algorithm

Example

Do $i = 1,100$

S_1
\[x(i) = y(i) + 10 \]
Do $j = 1,100$

S_2
\[b(j) = a(j,n) \]
Do $k = 1,100$

S_3
\[a(j+1,k) = b(j)+c(j,k) \]
Enddo

S_4
\[y(i+j) = a(j+1,n) \]
Enddo
Enddo

All the edges
Vectorisation algorithm

Example

\begin{align*}
S_1 & \text{ Do } i = 1, 100 \\
& \quad x(i) = y(i) + 10 \\
& \quad \text{Do } j = 1, 100 \\
S_2 & \quad b(j) = a(j, n) \\
& \quad \text{Do } k = 1, 100 \\
S_3 & \quad a(j+1, k) = b(j) + c(j, k) \\
& \quad \text{Enddo} \\
S_4 & \quad y(i+j) = a(j+1, n) \\
& \quad \text{Enddo} \\
& \quad \text{Enddo}
\end{align*}

What are the SCCs?
Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **S₁** | Do 𝑖 = 1,100

 𝑥(𝑖) = 𝑦(𝑖) + 10
 Do 𝑗 = 1,100

 S₂ | 𝑏(𝑗) = 𝑎(𝑗,𝑛)
 Do 𝑘 = 1,100

 S₃ | 𝑎(𝑗 + 1, 𝑘) = 𝑏(𝑗) + 𝑐(𝑗, 𝑘)
 Enddo

 S₄ | 𝑦(𝑖 + 𝑗) = 𝑎(𝑗 + 1, 𝑛)
 Enddo
 Enddo
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_1, S_2, S_3, S_4\}, 1)

SCCs and topological sort gives
\{S_2, S_3, S_4\}, \{S_1\}

Do i = 1, 100
 Vectorise(\{S_2, S_3, S_4\}, 2)
Enddo
Vectorise(\{S_1\}, 1)
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise({S_1, S_2, S_3, S_4}, 1)

SCCs and topological sort gives
{S_2, S_3, S_4}, {S_1}

Do i = 1, 100
 Vectorise({S_2, S_3, S_4}, 2)
Enddo

Vectorise({S_1}, 1)
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise($\{S_1\}$, 1)

Distribute

Do $i = 1, 100$

 Vectorise($\{S_2, S_3, S_4\}$, 2)

Enddo

Do $i = 1, 100$

 $x(i) = y(i) + 10$

Enddo
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise($\{S_1\}$, 1)

Vectorise

Do i = 1, 100

Vectorise($\{S_2, S_3, S_4\}$, 2)

Enddo

x(1:100) = y(1:100) + 10
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise\(\{S_1\}, 1\)

Vectorise

\[
\text{Do } i = 1, 100 \\
\quad \text{Vectorise}(\{S_2, S_3, S_4\}, 2) \\
\text{Enddo}
\]

\[
x(1:100) = y(1:100) + 10
\]
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Vectorise(\{S_4\}, 2)
Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
Enddo

Vectorise(\{S_4\}, 2)

Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Enddo

y(i+1:i+100) = a(2:101,N)

Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm
Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3, S_4\}, 2)

SCCs and topological sort gives
\{S_2, S_3\}, \{S_4\}

Do i = 1, 100
 Do j = 1, 100
 Vectorise(\{S_2, S_3\}, 3)
 Enddo
 Enddo

y(i+1:i+100) = a(2:101,N)

Enddo

x(1:100) = y(1:100) + 10

Level 1 dependences removed
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise({S_2, S_3}, 3)

SCCs and topological sort gives
{S_2}, {S_3}

Do i = 1, 100
 Do j = 1, 100
 Vectorise({S_2}, 3)
 Vectorise({S_3}, 3)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo

x(1:100) = y(1:100) + 10
Vectorisation algorithm

Example

Vectorise(Region, LoopDepth, DDG)

Vectorise(\{S_2, S_3\}, 3)

SCCs and topological sort gives
\{S_2\}, \{S_3\}

Do i = 1, 100
 Do j = 1, 100
 b(j) = a(j,n)
 a(j+1,1:100)=b(j)+c(j,1:100)
 Enddo
 y(i+1:i+100) = a(2:101,N)
Enddo

x(1:100) = y(1:100) + 10

Note \(S_2\) not in depth 3 – leaves single statement
Dependency reducing transforms

- What happened if no vectorisable regions found?
- Try transformations
Dependency reducing transforms
Loop Interchange

Loop interchange: move loop carried dependences outermost

```plaintext
Do j = 1, M
    Do i = 1, N
        a(i+1,j) = a(i,j) + c
    Enddo
Enddo
```

Distance $[0,1]$. Even if j run sequentially, loop carried dep i not vectorisable.

```plaintext
Do i = 1, N
    Do j = 1, M
        a(i+1,j) = a(i,j) + c
    Enddo
Enddo
```

Now $[1,0]$ - inner loop vectorisable

```plaintext
Do i = 1, N
    a(i+1,1:N) = a(i,1:N) + c
Enddo
```
Dependency reducing transforms
 Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example

Do i = 1, N
 t = a(i)
 a(i) = b(i)
 b(i) = t
Enddo

Where are the dependences? (Ignore output dependences)
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example
Do i = 1, N
 t = a(i)
 a(i) = b(i)
 b(i) = t
Enddo

Cycle in dependence graph prevents distribution and vectorisation
Dependency reducing transforms
Scalar expansion

Convert a scalar in loop to array with one element per iteration

Example
Do i = 1, N
 tt(i) = a(i)
 a(i) = b(i)
 b(i) = tt(i)
Enddo

Enddo

Easily distributed and vectorised

Anti dependence removed
Dependency reducing transforms
Scalar expansion

May fail to remove dependence

<table>
<thead>
<tr>
<th>Original</th>
<th>Still cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do i = 1, N</td>
<td>tt(0) = t Do i = 1, N</td>
</tr>
<tr>
<td>t = t + a(i) + a(i+1)</td>
<td>tt(i) = t(i-1) + a(i) + a(i+1)</td>
</tr>
<tr>
<td>a(i) = t</td>
<td>a(i) = tt(i)</td>
</tr>
<tr>
<td>Enddo</td>
<td>Enddo</td>
</tr>
<tr>
<td></td>
<td>t = tt(N)</td>
</tr>
</tbody>
</table>

- Whether or not scalar expansion can break cycles depends on whether it is a covering definition (see CMA).
- In practice, recurrence on the scalar is the biggest problem.

Covering definition
Definition X of scalar S covers the loop, if no earlier definition of S in the loop could reach a use after X.
Dependency reducing transforms
Scalar renaming

Can be used to eliminate loop independent output and anti-dependences

Original

Do i = 1, N
 t = a(i) + b(i)
 c(i) = t + t
 t = d(i) - b(i)
 a(i+1) = t * t
Enddo

Renamed

Do i = 1, N
 t1 = a(i) + b(i)
 c(i) = t1 + t1
 t2 = d(i) - b(i)
 a(i+1) = t2 * t2
Enddo

Scalar expansion, loop distribution and vectorisation now possible
Dependency reducing transforms
Node splitting

Scalar expansion and renaming cannot eliminate all cycles

Original
Do i = 1, N
 \[a(i) = x(i+1) + x(i) \]
 \[x(i+1) = b(i) + t \]
Enddo

- Renaming does not break cycle. Critical anti-dependence
Dependency reducing transforms
Node splitting

Scalar expansion and renaming cannot eliminate all cycles

Split
Do i = 1, N
 xx(i) = x(i+1)
 a(i) = xx(i) + x(i)
 x(i+1) = b(i) + t
Enddo

Cycle broken. Vectorisable with statement reordering: \(S_0, S_2, S_1 \)
NP-Complete to find minimal critical dependences
Summary

- Vector loops
- Loop distribution
- Dependence condition for vectorisation
- Vectorisation algorithm based on SCC and hierarchical dependences
- Loop Interchange
- Scalar Expansion, Renaming and Node splitting
- Layout in memory important too!
The biggest revolution in the technological landscape for fifty years
Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk

• 4-year programme: MSc by Research + PhD

• Research-focused: Work on your thesis topic from the start

• Collaboration between:
 ▶ University of Edinburgh’s School of Informatics
 ✴ Ranked top in the UK by 2014 REF
 ▶ Edinburgh Parallel Computing Centre
 ✴ UK’s largest supercomputing centre

• Research topics in software, hardware, theory and application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

• Full funding available

• Industrial engagement programme includes internships at leading companies

The biggest revolution in the technological landscape for fifty years
Now accepting applications!
Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk