Scalar Optimisation Part 2

Michael O’Boyle

January 2014
Course Structure

• L1 Introduction and Recap

• 4-5 lectures on classical optimisation
 – 2 lectures on scalar optimisation
 – Last lecture on redundant expressions
 – Today look at dataflow framework and SSA

• 4-5 lectures on high level approaches

• 4-5 lectures on adaptive compilation
Dataflow analysis for redundant expressions: calculate available

$DEExpr(b)$ - subexpressions not overwritten in this block b (local)

$NOTKILLED(b)$ - subexpressions that are not killed (local)

$AVAIL(b) = \bigcap_{p \in pred(b)} (DEExpr(p) \cup (AVAIL(p) \cap NOTKILLED(p)))$

- $DEExpr(b)$ and $NOTKILLED(b)$ can be calculated locally for each basic block b

- Initialise $AVAIL(b) = \emptyset$

- Find for each block in turn calculate $AVAIL(b)$ based on predecessors

- Keep repeating the procedure till results stabilise.
AVAIL() set calculation

\[m = a+b \quad n = a+b \]

\[p = c + d \quad r = c + d \]

\[q = a+b \quad r = c+d \]

\[e = b + 18 \quad s = a + b \quad u = e + f \]

\[v = a + b \quad w = c + d \quad x = e + f \]

\[y = a + b \quad z = c + d \]
Calculate Avail(b) for each Basic Block b starting at block A

\[\text{AVAIL}(A) = \emptyset \]

\[\text{AVAIL}(B) = (\text{DEExpr}(A) \cup (\text{AVAIL}(A) \cap \text{NOTKILLED}(A))) \]
\[= \{a + b\} \cup (\emptyset \cap U) = \{a + b\} \]

\[\text{AVAIL}(G) = (\text{DEExpr}(B) \cup (\text{AVAIL}(B) \cap \text{NOTKILLED}(B))) \]
\[\cap (\text{DEExpr}(F) \cup (\text{AVAIL}(F) \cap \text{NOTKILLED}(F))) \]
Find available expressions

Post order

<table>
<thead>
<tr>
<th>Node</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avail1</td>
<td>∅</td>
<td>a+b</td>
<td>a+b</td>
<td>a+b,c+d</td>
<td>a+b,c+d</td>
<td>e+f</td>
<td>c+d</td>
</tr>
<tr>
<td>Avail2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a+b,c+d,e+f</td>
<td>a+b,c+d</td>
</tr>
</tbody>
</table>

Reverse Post order: Finds fixed point on first iteration

<table>
<thead>
<tr>
<th>Node</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avail1</td>
<td>∅</td>
<td>a+b</td>
<td>a+b</td>
<td>a+b,c+d</td>
<td>a+b,c+d</td>
<td>a+b,c+d,e+f</td>
<td>a+b,c+d</td>
</tr>
</tbody>
</table>

Traversal order affects number of iterations to solve equations.

Will solution always terminate?

How many iterations? What class of problems?
Another example: Dataflow analysis for live variables

• A variable \(v \) is live at a point \(p \) if there is a path from \(p \) to a use of \(v \) along which \(v \) is not redefined.

• Useful to eliminate stores of variables no longer needed - useless store elimination

• Useful for detecting uninitialised variables

• Essential for global register allocation

• Determines whether a variable MAY be read after this BB and is therefore a candidate to be put in a register
Equations for live vars

$\text{LiveOut}(b) = \bigcup_{p \in \text{succ}(b)} (\text{UEVar}(p) \cup (\text{LiveOut}(p) \cap \text{NotKilledVar}(p)))$

$\text{UEVar}(p)$ upwardly exposed variables used in p before redefinition

$\text{NotKilledVar}(p)$ var not defined in this block p

- Similar to AVAIL

- Depends on successors not predecessors backward vs forward

- AVAIL is an all paths problem (\cap) LiveOut any path (\cup)

- Can also be solved using iterative algorithm. (How long/terminate?)
Example of LiveOut

\[
\begin{align*}
B0 & \quad i = 1 \\
B1 & \quad a = c = \\
B2 & \quad b = c = d = \\
B3 & \quad a = d = \\
B4 & \quad d = \\
B5 & \quad c = \\
B6 & \quad b = \\
B7 & \quad y = a + b \\
\end{align*}
\]
Solution:

<table>
<thead>
<tr>
<th>UEVar</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVarKill</td>
<td>a,b,c,d,y,z</td>
<td>b,d,i,y,z</td>
<td>a,i,y,z</td>
<td>b,c,i,y,z</td>
<td>a,b,c,i,y,z</td>
<td>a,b,d,i,y,z</td>
<td>a,c,d,i,y,z</td>
<td>a,b,c,d</td>
</tr>
</tbody>
</table>

Reverse Post order

<table>
<thead>
<tr>
<th>Iter</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>a,b,c,d,i</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>a,b,c,d,i</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>a,i</td>
<td>a,b,c,d,i</td>
<td>-</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
<tr>
<td>3</td>
<td>i</td>
<td>a,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
<tr>
<td>5</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
</tbody>
</table>

5 iterations to fixed point. Is this the quickest solution?
Solution 2

Post order

<table>
<thead>
<tr>
<th>Iter</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
<tr>
<td>3</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
</tbody>
</table>

- What is the best order?

- Question: why does all this work?
Semi-lattice

A set L and a meet operator \wedge such that

$\forall a, b, c \in L$

1. $a \wedge a = a$

2. $a \wedge b = b \wedge a$

3. $a \wedge (b \wedge c) = (a \wedge b) \wedge c$

\wedge imposes an order $a \geq b \rightarrow a \wedge b = b$

Contains a bottom element \bot, $\bot \wedge a = \bot$, $a \geq \bot$

Models an ordered finite set of facts
Semi-lattice

• Choose a semi-lattice to represent the facts

• Attach a meaning to each $a \in L$. Each a distinct set of facts

• For each node (basic block) n in the CFG, associate a function $f_n : L \mapsto L$.

• It models the behaviour of the code belonging to n

• Avail: Semilattice is $(2^E, \land), E$ the set of all expressions, \land is \cap.

M. O’Boyle
Scalar Optimisation
January 2014
Example of LiveOut lattice
Round Robin algorithm

for i = 1 to N
 Avail(b[i]) = 0
change = true
while (change)
 change = false
 for i = 0 to N
 temp = intersect[i] (Def(x) union (Avail x union Nkill(x)))
 if avail(b[i]) != temp
 change = true
 avail(b[i]) = temp
Standard algorithm to solve dataflow. There are faster ones.
Iterative data flow

- If \(f \) is monotone and the semi-lattice bounded then the round robin algorithm terminates and finds a least fixed point

- Given certain technical constraints on \(f \), there is a unique fixed point and order of evaluation does not matter

- Pick an order that converges quickly

- A lot of theory about this. Given certain conditions then a round-robin post-order alg will finish in \(d(G) + 3 \) passes where \(d(G) \) is the loop connectedness

- Most dataflow fits this. Means runs in linear time. Muchnick for more details for more in depth explanation.
Other dataflow analysis

• Reaching definitions: Find all places where a variable was defined and not killed subsequently.

• Very Busy Expressions: An expression is evaluated on all paths leaving a block - used for code hoisting.

• Constant Propagation. Shows that a variable \(v \) has the same value at point \(p \) regardless of control-flow. Allows specialisation.

• Uses a very small lattice and terminates quickly. Easy to express using SSA form.
SSA form

- Most advanced analysis needs to track def and uses of vars rather than basic block summary
- Variables can have multiple definitions and uses
- Need to keep track of which def flows to which use over all possible control-flow paths
- SSA gives a unique name to each definition
- Need ϕ nodes to handle merging of control-flow
- Can be constructed in $O(n)$ time. Increasingly standard form.
Example SSA

\[i = 1 \]
\[a1 = (a0, a4) \]
\[a2 = \]
\[b = \]
\[c = \]
\[d = \]
\[a3 = d = \]
\[a4 = (a2, a3) \]
\[y = a4 + b \]
\[i = i + 1 \]

B0 \rightarrow B1 \rightarrow B2 \rightarrow B4 \rightarrow B7
B1 \rightarrow B3 \rightarrow B5
B2 \rightarrow B4
B4 \rightarrow B5
B5 \rightarrow B6
B6 \rightarrow B7
Algorithms using SSA

• Many dataflow algorithms are considerably simplified using SSA

• Value numbering. Each value has a unique name allowing value numbering on complex control-flow

• $Constants(n) = \bigwedge_{p \in \text{pred}(n)} F_p(\text{Constants}(p))$

• Small lattice $\top > \{-\text{maxint} .. +\text{maxint}\} > \bot$

• Meet operator: $\top \land x = x$, $\bot \land x = \bot$, $c_i \land c_j = c_i$ if $c_i = c_j$ else \bot

• F_p depends on the operations in block. Optimistic algorithm
Algorithms using SSA: Constant propagation

Model F_p

$x = y$ if $\text{Constants}(p) = \{(x, c_1), (y, c_2), ..\}$ then
$\text{Constants}(p) = \text{Constants}(p) - (x, c_1) \cup (x, c_2)$

- eg update old value of x (c_1) with the new value in y (c_2)

$x = y \text{ op } z$ if $\text{Constants}(p) = \{(x, c_1), (y, c_2), (z, c_3), ..\}$ then
$\text{Constants}(p) = \text{Constants}(p) - (x, c_1) \cup (x, c_2 \text{ op } c_3)$

- eg update old value of x (c_1) with the new value after (c_2 op c_3)
\[x_0 = 17 \]
\[x_1 = \bigcap (x_0, x_2) \]
\[x_2 = x_1 + i_0 \]

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2) (when (i_0 = 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17</td>
<td>(\top)</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>(17 \land \top = 17)</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>(17 \land 17 = 17)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2) (when (i_0 = 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17</td>
<td>(\top)</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>(17 \land \top = 17)</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>(17 \land 18 = \bot)</td>
</tr>
</tbody>
</table>
Limits and Extensions

- Dataflow assumes that all paths in the CFG are taken hence conservative approximations

- Guarded SSA attempts to overcome this by having additional meet nodes γ, η and μ to carry conditional information around

- Array based SSA models access patterns - can be generalised using presburger formula

- Inter-procedural challenging. Pointers destroy analysis! Large research effort in points-to analysis.
Summary

• Levels of optimisations

• Examined dataflow as a generic optimisation framework

• Round robin algorithm and lattices

• Using SSA as a framework for optimisation

• Limits of dataflow - other techniques?

• Next lecture code generation.