Scalar Optimisation Part 1

Michael O’Boyle

January, 2014
Course Structure

• L1 Introduction and Recap

• 4/5 lectures on classical optimisation
 – 2 lectures on scalar optimisation
 – Today example optimisations
 – Next lecture dataflow framework and SSA

• 5 lectures on high level approaches

• 4-5 lectures on adaptive compilation
Overview

• Machine dependent vs independent optimisations

• Redundant elimination example
 – Local value numbering
 – Super value numbering
 – Dominator value numbering

• Alternative general approach
 – Global Redundancy Elimination
 – Based on iterative dataflow analysis

• Other dataflow analysis: Live variable analysis
Optimisation Classification

- Machine independent vs dependent - not always a clear distinction. Main trends in architecture increased memory latency and exploitation of ILP are machine dependent.

- Machine independent applicable to all. Eliminate redundant work, accesses. Use less expensive operations where possible.

- Optimisation can be performed at source, IR, assembler, machine code level.

- Concentrate on machine independent scalar optimisation - IR level.

- Optimisation = analysis + transformation. Form depends on IR - impact on complexity.
Redundant expression elimination

An expression $x + y$ is redundant if already evaluated and not redefined.

Value numbering: Associate numbers with operators/operands and hash lookup in table $\text{Hash}(+,x,y)$ return value number.

If value number already there replace with reference to variable.

\[
\begin{align*}
 a^3 &= x^1 + y^2 & a^3 &= x^1 + y^2 & a^3 &= x^1 + y^2 \\
 b^4 &= x^1 + y^2 & b^4 &= a^3 & b^4 &= a^3 \\
 a^3 &= 17 & a^3 &= 17 & a^3 &= 17 \\
 c^5 &= x^1 + y^2 & c^5 &= a^3!! & c^5 &= x^1 + y^2
\end{align*}
\]

Can be extended to handle larger scope based on dominators. Fails in presence of general control-flow.
Example: CFG rep of program. Basic blocks + control-flow.

LVN removes some but not all of redundant expressions: L vs ?
Super Local Value numbering SVN

Basic blocks (BB) have just one entry and exit.

- Extended BB: (EBB) A tree of BBs $\{B_1, \ldots, B_n\}$ where B_1 may have multiple predecessors.

- All others have a single unique predecessor but possibly multiple exits.

- This tree is only entered at the root.

In our example 3 EBBs (A,B,C,D,E), (F), (G)
SVN considers each path within an EBB as single block
So (A,B), (A,C,D), (A,C,E) are considered paths for LVN
Example: Extended Basic Blocks.
Dominator Value numbering DVN

SVN based on EBBs fail when there are join paths in the graph.

- Use concept of dominators. Basic idea if reaching paths to a node share common ancestor nodes, then these can be used for redundancy elimination

- A node X strictly dominates Y ($X >> Y$) if $X \neq Y$ and if X appears on every path from the graph entry to Y

<table>
<thead>
<tr>
<th>Node</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOM</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>A,C</td>
<td>A,C</td>
<td>A,C</td>
<td>A</td>
</tr>
<tr>
<td>IDOM</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

IDOM- immediate dominator - forms a dominator tree.

So if expression appears in F but defined in A,C then redundant
Example: Dominator value numbering.

What about the remaining two ?s in G and F?
Dataflow analysis

- A formal program analysis that has a wide range of application.

- Described property of a program at a particular point in set based recurrence equations

- Assumes a control-flow graph (CFG) consisting of nodes (basic blocks) and edges: control-flow

- Determines property at a point in the program as a function of local information and approximation of global information

- Approx solutions will converge to exact solution in finite number of iterations for finite lattices - more detail next lecture
Dataflow analysis for redundant expressions: calculate available

\[DEExpr(b) \] - subexpressions not overwritten in this block b (local)

\[NOTKILLED(b) \] - subexpressions that are not killed (local)

\[AVAIL(b) = \bigcap_{p \in pred(b)} (DEExpr(p) \cup (AVAIL(p) \cap NOTKILLED(p))) \]

- \(DEExpr(b) \) and \(NOTKILLED(b) \) can be calculated locally for each basic block b

- Initialise \(AVAIL(b) = \emptyset \)

- For each block in turn calculate \(AVAIL(b) \) based on predecessors

- Keep repeating the procedure till results stabilise.
Find available expressions part 1

<table>
<thead>
<tr>
<th>Node</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>D,E</td>
<td>B,F</td>
</tr>
<tr>
<td>DEExpr</td>
<td>a+b</td>
<td>c+d</td>
<td>a+b</td>
<td>b+18</td>
<td>a+17</td>
<td>a+b</td>
<td>a+b</td>
</tr>
<tr>
<td></td>
<td>c+d</td>
<td></td>
<td>a+b</td>
<td>c+d</td>
<td>e+f</td>
<td>c+d</td>
<td>c+d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c+d</td>
<td>e+f</td>
<td>e+f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kill</td>
<td></td>
<td></td>
<td>e+f</td>
<td>e+f</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculate $\text{Avail}(b)$ for each Basic Block b starting at block A

$$\text{AVAIL}(B) = (DEExpr(A) \cup (\text{AVAIL}(A) \cap \text{NOTKILLED}(A)))$$
$$= \{a + b\} \cup (\emptyset \cap U) = \{a + b\}$$

$$\text{AVAIL}(C) = (DEExpr(A) \cup (\text{AVAIL}(A) \cap \text{NOTKILLED}(A)))$$
$$= \{a + b\} \cup (\emptyset \cap U) = \{a + b\}$$
Find available expressions part 2

D and E are the same

\[
AVAIL(D) = (DEExpr(C) \cup (AVAIL(C) \cap NOTKILLED(C)))
\]
\[
= \{a + b, c + d\} \cup (\{a + b\} \cap U) = \{a + b, c + d\}
\]

\[
AVAIL(E) = (DEExpr(C) \cup (AVAIL(C) \cap NOTKILLED(C)))
\]
\[
= \{a + b, c + d\} \cup (\{a + b\} \cap U) = \{a + b, c + d\}
\]

F is a join point: 2 predecessors

\[
AVAIL(F) = (DEExpr(D) \cup (AVAIL(D) \cap NOTKILLED(D)))
\]
\[
\cap (DEExpr(E) \cup (AVAIL(E) \cap NOTKILLED(E))) = \\
\{b + 18, a + b, e + f\} \cup (\{a + b, c + d\} \cap U - \{e + f\})
\]
\[
\cap \{a + 17, c + d, e + f\} \cup (\{a + b, c + d\} \cap U - \{e + f\})
\]
\[
= \{a + b, c + d, e + f\}
\]
Find available expressions part 3

G another join point

\[
AVAIL(G) = (DEExpr(B) \cup (AVAIL(B) \cap NOTKILLED(B))) \\
\cap (DEExpr(F) \cup (AVAIL(F) \cap NOTKILLED(F)))
\]

Calculate this one yourselves
Example: Global redundancy elim using AVAIL()

```plaintext
A
m = a + b
n = a + b

L
r = c + d

B
p = c + d
r = c + d

L
e = b + 18
s = a + b
u = e + f

C
q = a + b
r = c + d

S

D
e = a + 17
t = c + d
u = e + f

S

F
v = a + b
w = c + d
x = e + f

G
y = a + b
z = c + d
```

M. O'Boyle
Scalar Optimisation
January, 2014
Summary

• Levels of optimisations

• Redundant expression elimination

• LVN, SVN, DVN

• Introduced dataflow as a generic optimisation framework

• Iterative solution to equations

• Next time: More detailed examination of dataflow and SSA