
Machine Learning based Compilation

Michael O’Boyle

March, 2009

M. O’Boyle Machine Learning based Compilation March, 2009

1

Overview

• Machine learning - what is it and why is it useful?

• Predictive modelling

• Scheduling and low level optimisation

• Loop unrolling and inlining

• Limits and other uses of machine learning

• Future work and summary

M. O’Boyle Machine Learning based Compilation March, 2009

2

Machine Learning as a solution

• Well established area of AI, neural networks, genetic algorithms etc. but what
has AI got to do with compilation?

• In a very simplistic sense machine learning can be considered as sophisticated
form of curve fitting.

INPUTS

OUTPUTS

. .

.
.

. . .

M. O’Boyle Machine Learning based Compilation March, 2009

3

Machine Learning

• The inputs are characteristics of the program and processor. Outputs, the
optimisation function we are interested in, execution time power or code size

• Theoretically predict future behaviour and find the best optimisation

. .

.
.

. . .

Program characteristics

Execution

time

. .

.
.

. . .

Program characteristics

Best
Transformation

M. O’Boyle Machine Learning based Compilation March, 2009

4

Predictive Modelling

Predictive
Modelling

MODEL

Training data features

Execution
time
or other
metric

Test features

Predicted time

• Predictive modelling techniques all have the property that they try to learn a
model that describes the correlation between inputs and outputs

• This can be a classification or a function or Bayesian probability distribution

• Distinct training and test data. Compiler writers don’t make this distinction!

M. O’Boyle Machine Learning based Compilation March, 2009

5

Training data

• Crucial to this working is correct selection of training data.

• The data has to be rich enough to cover the space of programs likely to be be
encountered.

• If we wish to learn over different processors so that the system can port then
we also need sufficient coverage here too

• In practice it is very difficult to formally state the space of possibly interesting
programs

• Ideas include typical kernels and compositions of them. Hierarchical benchmark
suites could help here

M. O’Boyle Machine Learning based Compilation March, 2009

6

Feature selection of programs

• The real crux problem with machine learning is feature selection What features
of a program are likely to predict it’s eventual behaviour?

• In a sense, features should be a compact representation of a program that
capture the essential performance related aspects and ignore the irrelevant

• Clearly, the number of vowels in the program is unlikely to be significant nor
the user comments

• Compiler IRs are a good starting point as they are condensed reps.

• Loop nest depth, control-flow graph structure, recursion, pointer based
accesses, data structure

M. O’Boyle Machine Learning based Compilation March, 2009

7

Case studies

Predictive
Modelling

MODEL

Execution
time
or other
metric

Test features
Program Features

assumed proc

Transformation
Description

Predicted
Optimal
Transformation

Original Test

• All of the techniques have the above characterisation

• In fact it is often easier to select a good transformation rather than determine
execution time. Relative vs absolute reasoning

M. O’Boyle Machine Learning based Compilation March, 2009

8

Learning to schedule Moss, ..,Cavazos et al

Given partial schedule 2, which instruction to schedule next 1 or 4?

2

3 4

1 scheduledavailable

availablenot
available

• One of the first papers to investigate machine learning for compiler optimisation

• Appeared at NIPS ’07 - not picked up by compiler community till later.

M. O’Boyle Machine Learning based Compilation March, 2009

9

Learning to schedule

• The approach taken is to look at many (small to medium) basic blocks and to
exhaustively determine all possible schedules.

• Next go through each block and given a (potentially empty) partial schedule
and the choice of two or more instructions that may be schedule d next, select
each in turn and determine which is best.

• If there is a difference, record the input tuple (P, Ii, Ij) where P is a partial
schedule, Ii is the instruction that should be scheduled earlier than Ij. Record
TRUE as the output. Record FALSE with (P, Ij, Ii)

• For each variable size tuple record a fixed length vector summary based on
features.

M. O’Boyle Machine Learning based Compilation March, 2009

10

Learning to schedule

Feature selection can be a black art. Here dual issue of alpha biases choice.

• Odd Partial (odd): odd or even length schedule

• Instruction Class (ic): which class corresponds to function unit

• weighted critical path (wcp): length of dependent instructions

• Actual Dual (d): can this instruction dual issue with previous

• maxdelay (e): earliest cycle this instruction can go

M. O’Boyle Machine Learning based Compilation March, 2009

11

Feature extraction

2

3 4

1 scheduledavailable

availablenot
available

Tuple ({2}, 1, 4) : [odd:T, ic:0, wcp:1, d:T, e:0]: TRUE,

Tuple ({2}, 4, 1) : [odd:T, ic:0, wcp:0, d:T, e:0]: FALSE

• Given these tuples apply different learning techniques on data to derive a model

• Use model to select scheduling for test problems. One of the easiest is table
lookup/nearest neighbour

• Others used include neural net with hidden layer, induction rule and decision
tree

M. O’Boyle Machine Learning based Compilation March, 2009

12

Example - table lookup

2,1,4

2,4,1 T, 0, 0, T, 0

T, 0, 1 ,T ,0

odd ic wcp d e T F

15 8

3 7

Schedule choice

• The first schedule is selected as previous training has shown that it is better

• If feature vector not stored, then find nearest example. Very similar to
instance-based learning

M. O’Boyle Machine Learning based Compilation March, 2009

13

Induction heuristics

e = second

e = same ∧ wcp = first

e = same ∧ wcp = same ∧ d = first ∧ ico = load

e = same ∧ wcp = same ∧ d = first ∧ ico = store

e = same ∧ wcp = same ∧ d = first ∧ ico = ilogical

e = same ∧ wcp = same ∧ d = first ∧ ico = fpop

e = same ∧ wcp = same ∧ d = first ∧ ico = iarith ∧ ic1 = load ...

• Schedule the first Ii if the max time of the second is greater

• If the same, schedule the one with the greatest number of critical dependent
instruction ...

M. O’Boyle Machine Learning based Compilation March, 2009

14

Results

• Basically all techniques were very good compared to the native scheduler
Approximately 98% of the performance of the hand-tuned heuristic

• Small basic blocks were good training data for larger blocks. Relied on
exhaustive search for training data - not realistic for other domains

• Technique relied on features that were machine specific so questionable
portability though induction heuristic is pretty generic

• There is little head room in basic bock scheduler so hard to see benefit over
standard schemes. Picked a hard problem to show improvement

• It seems leaning relative merit i vs j is easier than absolute time

M. O’Boyle Machine Learning based Compilation March, 2009

15

Learning to unroll Monsifort

• Monsifort uses machine learning to determine whether or not it is worthwhile
unrolling a loop

• Rather than building a model to determine the performance benefit of loop
unrolling, try to classify whether or not loop unrolling s worthwhile

• For each training loop, loop unrolling was performed and speedup recorded.
This output was translated into good bad,or no change

• The loop features were then stored alongside the output ready for learning

M. O’Boyle Machine Learning based Compilation March, 2009

16

Learning to unroll Monsifort

• Features used were based on inner loop characteristics.

• The model induced is a partitioning of the feature space. The space was
partitioned into those sections where unrolling is good, bad or n unchanged .

• This division was hyperplanes in the feature space that can easily be represented
by a decision tree.

• This learnt model is the easily used at compile time. Extract the features of
the loop and see which section they belong too

• Although easy to construct requires regions in space to be convex. Not true
for combined transformations.

M. O’Boyle Machine Learning based Compilation March, 2009

17

Learning to unroll Monsifort

3 x −2y > 6

y n

−x+2y>8 6x+y>60

y n y n

A B A B

A

A

B

B

. .
..

.
.

.
.

.

.
.

y

x

Feature space is partitioned into regions that can be represented by decision tree.

Each constraint is linear in the features forming hyperplanes in the 6 dimensional
space.

M. O’Boyle Machine Learning based Compilation March, 2009

18

Learning to unroll Monsifort

do i = 2, 100

enddo

 a(i) = a(i) + a(i−1) + a(i+1)

statements 1
aritmetic op 2
iterations 99
array access 4
resuses 3
ifs 0

• Features try to capture structure that may affect unrolling decisions

• Again allows programs to be mapped to fixed feature vector

• Feature selection can be guided by metrics used in existing hand-written
heuristics

M. O’Boyle Machine Learning based Compilation March, 2009

19

Results

• Classified examples correctly 85% of time. Better at picking negative casses
due to bias in training set

• Gave an average 4% and 6% reduction in execution time on Ultrasparc and
IA64 compared to 1

• However g77 is an easy compiler to improve upon. Although small unrolling
only beneficial on 17/22% of benchmarks

• Boosting helped classification generate a set of classifiers and select based on
a weighted average of their classification

• Basic approach - unroll factor not considered.

M. O’Boyle Machine Learning based Compilation March, 2009

20

Learning to inline Cavazos

• Inlining is the number one optimisation in JIT compilers. Many papers from
IBM on adaptive algorithms to get it right in Jikes

• Can we use machine learning to improve this highly tuned heuristic? Tough
problem. Similar to meta-optimisation goal

• In Cavazos(2005) we looked at automatically determining inline heuristics
under different scenarios.

• Opt vs Adapt -different user compiler options. Total time vs run time vs a
balance - compile time is part of runtime

• x86 vs PPC - can the strategy port across platform

M. O’Boyle Machine Learning based Compilation March, 2009

21

Learning to inline Cavazos

• Initially tried rule induction - failed miserably. Not clear at this stage why.
Difficult to determine whether optimisation has impact

• Next used a genetic algorithm to find a good heuristic.

• For each scenario asked the GA to find the best geometric mean over the
training set. Using search for learning.

• Training set used - Specjvm98, test set - DaCapo including Specjbb

• Focused learning on choosing the right numeric parameters of a fixed heuristic.

• Applied this to a test set comparing against IBM heuristic.

M. O’Boyle Machine Learning based Compilation March, 2009

22

Learning a heuristic

inliningHeuristic(calleeSize, inlineDepth, callerSize)

if (calleeSize > CALLEE MAX SIZE)

return NO;

if (calleeSize < ALWAYS INLINE SIZE)

return YES;

if (inlineDepth > MAX INLINE DEPTH)

return NO;

if (callerSize > CALLER MAX SIZE)

return NO;

// Passed all tests so we inline

return YES;

Focus on tuning parameters of an existing heuristic rather than generating a new
one from scratch

Features are dynamic. Learn off-line and applied heuristic on-line

M. O’Boyle Machine Learning based Compilation March, 2009

23

Impact of inline depth on performance: Compress

M. O’Boyle Machine Learning based Compilation March, 2009

24

Impact of inline depth on performance: Jess

M. O’Boyle Machine Learning based Compilation March, 2009

25

Parameters found

Parameters Compilation Scenarios

Orig Adapt Opt:Bal Opt:Tot Adapt (PPC) Opt:Bal (PPC)

CalleeMSize 23 49 10 10 47 35

AlwaysSize 11 15 16 6 10 9

MaxDepth 5 10 8 8 2 3

CallerMSize 2048 60 402 2419 1215 3946

HotCalleeMSize 135 138 NA NA 352 NA

• Considerable variation across scenario.

• For instance on x86, Bal and Total similar except for the CallerMaxSize

• A priori these values could not be predetermined

M. O’Boyle Machine Learning based Compilation March, 2009

26

Results

Compilation SPECjvm98 DaCapo+JBB
Scenarios Running Total Running Total
Adapt 6% 3% 0% 29%
Opt:Bal 4% 16% 3% 26%
Opt:Tot 1% 17% -4% 37%
Adapt (PPC) 5% 1% -1% 6%
Opt:Bal (PPC) 1% 6% 8% 7%

• Does considerably better on the test data relative to inbuilt heuristic than on
Spec

• Suspect Jikes writers tuned their algorithm with SPEC in mind.

• Shows that an automatic approach ports better than hand-written

M. O’Boyle Machine Learning based Compilation March, 2009

27

Not a universal panacea

• I believe that machine learning will revolutionise compiler optimisation and will
become mainstream within a decade.

• However, it is not a panacea, solving all our problems.

• Fundamentally, it is an automatic curve fitter. We still have to choose the
parameters to fit and the space to optimise over

• Runtime undecidability will not go away.

• Complexity of space makes a big difference. Tried using Gaussian process
predicting on PFDC ’98 spaces - worse than random selection!

M. O’Boyle Machine Learning based Compilation March, 2009

