Chapter III: Transport Layer

UG3 Computer Communications & Networks (COMN)

Myungjin Lee myungjin.lee@ed.ac.uk

Slides copyright of Kurose and Ross

Chapter 3: Transport Layer

our goals:

- understand principles behind transport layer services:
 - multiplexing,demultiplexing
 - reliable data transfer
 - flow control
 - congestion control

- learn about Internet transport layer protocols:
 - UDP: connectionless transport
 - TCP: connectionoriented reliable transport
 - TCP congestion control

Transport services and protocols

- provide logical communication between app processes running on different hosts
- transport protocols run in end systems
 - send side: breaks app messages into segments, passes to network layer
 - rcv side: reassembles segments into messages, passes to app layer
- more than one transport protocol available to apps
 - Internet: TCP and UDP

Transport vs. network layer

- network layer: logical communication between hosts
- transport layer: logical communication between processes
 - relies on, enhances, network layer services

household analogy:

- 12 kids in Ann's house sending letters to 12 kids in Bill's house:
- hosts = houses
- processes = kids
- app messages = letters in envelopes
- transport protocol = Ann and Bill who demux to inhouse siblings
- network-layer protocol = postal service

Internet transport-layer protocols

- reliable, in-order delivery (TCP)
 - congestion control
 - flow control
 - connection setup
- unreliable, unordered delivery: UDP
 - no-frills extension of "best-effort" IP
- services not available:
 - delay guarantees
 - bandwidth guarantees

Multiplexing/demultiplexing

How demultiplexing works

- host receives IP datagrams
 - each datagram has source IP address, destination IP address
 - each datagram carries one transport-layer segment
 - each segment has source, destination port number
- host uses IP addresses & port numbers to direct segment to appropriate socket

TCP/UDP segment format

Connectionless demultiplexing

 recall: created socket has hostlocal port #:

DatagramSocket mySocket1

= new DatagramSocket(12534);

- recall: when creating datagram to send into UDP socket, must specify
 - destination IP address
 - destination port #

- when host receives UDP segment:
 - checks destination port # in segment
 - directs UDP segment to socket with that port #

IP datagrams with same dest. port #, but different source IP addresses and/ or source port numbers will be directed to same socket at dest

Connectionless demux: example

Connection-oriented demux

- TCP socket identified by 4-tuple:
 - source IP address
 - source port number
 - dest IP address
 - dest port number
- demux: receiver uses all four values to direct segment to appropriate socket

- server host may support many simultaneous TCP sockets:
 - each socket identified by its own 4-tuple
- web servers have different sockets for each connecting client
 - non-persistent HTTP will have different socket for each request

Connection-oriented demux: example

three segments, all destined to IP address: B, dest port: 80 are demultiplexed to *different* sockets

Connection-oriented demux: example

UDP: User Datagram Protocol [RFC 768]

- "no frills," "bare bones" Internet transport protocol
- "best effort" service, UDP segments may be:
 - lost
 - delivered out-of-order to app
- connectionless:
 - no handshaking between
 UDP sender, receiver
 - each UDP segment handled independently of others

- UDP use:
 - streaming multimedia apps
 (loss tolerant, rate sensitive)
 - DNS
 - SNMP
- reliable transfer over UDP:
 - add reliability at application layer
 - application-specific error recovery!

UDP: segment header

source port # dest port # length checksum

application data (payload)

UDP segment format

length, in bytes of UDP segment, including header

why is there a UDP? -

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
- small header size
- no congestion control: UDP can blast away as fast as desired

UDP checksum

Goal: detect "errors" (e.g., flipped bits) in transmitted segment

sender:

- treat segment contents, including header fields, as sequence of 16-bit integers
- checksum: addition (one's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected.
 But maybe errors
 nonetheless? More later

. . . .

Internet checksum: example

example: add two 16-bit integers

Note: when adding numbers, a carryout from the most significant bit needs to be added to the result

Principles of reliable data transfer

- important in application, transport, link layers
 - top-10 list of important networking topics!

- (a) provided service
- characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer

- important in application, transport, link layers
 - top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer

- important in application, transport, link layers
 - top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Reliable data transfer: getting started

Reliable data transfer: getting started

we'll:

- incrementally develop sender, receiver sides of reliable data transfer protocol (rdt)
- consider only unidirectional data transfer
 - but control info will flow on both directions!
- use finite state machines (FSM) to specify sender,
 receiver
 event causing state transition
 actions taken on state transition

state: when in this "state" next state uniquely determined by next event

rdt I.0: reliable transfer over a reliable channel

- underlying channel perfectly reliable
 - no bit errors
 - no loss of packets
- separate FSMs for sender, receiver:
 - sender sends data into underlying channel
 - receiver reads data from underlying channel

rdt2.0: channel with bit errors

- underlying channel may flip bits in packet
 - checksum to detect bit errors
- the question: how to recover from errors:

How do humans recover from "errors" during conversation?

rdt2.0: channel with bit errors

- underlying channel may flip bits in packet
 - checksum to detect bit errors
- *the* question: how to recover from errors:
 - acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK
 - negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors
 - sender retransmits pkt on receipt of NAK
- new mechanisms in rdt2.0 (beyond rdt1.0):
 - error detection
 - feedback: control msgs (ACK,NAK) from receiver to sender

rdt2.0: FSM specification

receiver

rdt rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) Wait for call from below rdt rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt send(ACK)

rdt2.0: operation with no errors

rdt2.0: error scenario

rdt2.0 has a fatal flaw!

what happens if ACK/NAK corrupted?

- sender doesn't know what happened at receiver!
- can't just retransmit: possible duplicate

handling duplicates:

- sender retransmits current pkt if ACK/NAK corrupted
- sender adds sequence number to each pkt
- receiver discards (doesn't deliver up) duplicate pkt

stop and wait sender sends one packet, then waits for receiver

response

28

rdt2.1: sender, handles garbled ACK/NAKs

rdt2.1: receiver, handles garbled ACK/NAKs

rdt2.1: discussion

sender:

- seq # added to pkt
- two seq. #' s (0,1) will suffice. Why?
- must check if received ACK/NAK corrupted
- twice as many states
 - state must "remember"
 whether "expected" pkt
 should have seq # of 0
 or I

receiver:

- must check if received packet is duplicate
 - state indicates whether 0or I is expected pkt seq#
- note: receiver can not know if its last ACK/ NAK received OK at sender

rdt2.2: a NAK-free protocol

- same functionality as rdt2.1, using ACKs only
- instead of NAK, receiver sends ACK for last pkt received OK
 - receiver must explicitly include seq # of pkt being ACKed
- duplicate ACK at sender results in same action as NAK: retransmit current pkt

rdt2.2: sender, receiver fragments

rdt3.0: channels with errors and loss

new assumption:

underlying channel can also lose packets (data, ACKs)

checksum, seq. #, ACKs, retransmissions will be of help ... but not enough

- approach: sender waits
 "reasonable" amount of
 time for ACK
- retransmits if no ACK received in this time
- if pkt (or ACK) just delayed (not lost):
 - retransmission will be duplicate, but seq. #'s already handles this
 - receiver must specify seq# of pkt being ACKed
- requires countdown timer

rdt3.0 sender

rdt3.0 in action

rdt3.0 in action

Performance of rdt3.0

- rdt3.0 is correct, but performance stinks
- e.g.: I Gbps link, I5 ms prop. delay, 8000 bit packet:

$$D_{trans} = \frac{L}{R} = \frac{8000 \text{ bits}}{10^9 \text{ bits/sec}} = 8 \text{ microsecs}$$

■ U sender: utilization — fraction of time sender busy sending

$$U_{\text{sender}} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$

- if RTT=30 msec, IKB pkt every 30 msec: 33kB/sec throughput over I Gbps link
- network protocol limits use of physical resources!

rdt3.0: stop-and-wait operation

Pipelined protocols

pipelining: sender allows multiple, "in-flight", yet-to-be-acknowledged pkts

- range of sequence numbers must be increased
- buffering at sender and/or receiver

(a) a stop-and-wait protocol in operation

(b) a pipelined protocol in operation

• two generic forms of pipelined protocols: go-Back-N, selective repeat

Pipelining: increased utilization

Pipelined protocols: overview

Go-back-N:

- sender can have up to N unacked packets in pipeline
- receiver only sends cumulative ack
 - doesn't ack packet if there's a gap
- sender has timer for oldest unacked packet
 - when timer expires,
 retransmit all unacked
 packets

Selective Repeat:

- sender can have up to N unack' ed packets in pipeline
- rcvr sends individual ack for each packet

- sender maintains timer for each unacked packet
 - when timer expires,
 retransmit only that
 unacked packet

Go-Back-N: sender

- k-bit seq # in pkt header
- "window" of up to N, consecutive unack' ed pkts allowed

- ACK(n):ACKs all pkts up to, including seq # n "cumulative ACK"
 - may receive duplicate ACKs (see receiver)
- timer for oldest in-flight pkt
- timeout(n): retransmit packet n and all higher seq # pkts in window

GBN: sender extended FSM

```
rdt send(data)
                       if (nextseqnum < base+N) {
                         sndpkt[nextseqnum] = make pkt(nextseqnum,data,chksum)
                         udt send(sndpkt[nextsegnum])
                         if (base == nextseqnum)
                           start timer
                         nextsegnum++
                       else
                        refuse data(data)
   base=1
   nextsegnum=1
                                          timeout
                                          start timer
                             Wait
                                          udt_send(sndpkt[base])
                                          udt send(sndpkt[base+1])
rdt rcv(rcvpkt)
 && corrupt(rcvpkt)
                                          udt send(sndpkt[nextsegnum-1])
                         rdt rcv(rcvpkt) &&
                           notcorrupt(rcvpkt)
                         base = getacknum(rcvpkt)+1
                         If (base == nextseqnum)
                           stop timer
                          else
                           start_timer
```

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with highest *in-order* seq

- may generate duplicate ACKs
- need only remember expectedseqnum
- out-of-order pkt:
 - discard (don't buffer): no receiver buffering!
 - re-ACK pkt with highest in-order seq #

GBN in action

Selective repeat

- receiver individually acknowledges all correctly received pkts
 - buffers pkts, as needed, for eventual in-order delivery to upper layer
- sender only resends pkts for which ACK not received
 - sender timer for each unACKed pkt
- sender window
 - N consecutive seq #'s
 - limits seq #s of sent, unACKed pkts

Selective repeat: sender, receiver windows

Selective repeat

sender

data from above:

 if next available seq # in window, send pkt

timeout(n):

resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

- mark pkt n as received
- if n smallest unACKed pkt, advance window base to next unACKed seq #

receiver

pkt n in [rcvbase, rcvbase+N-1]

- send ACK(n)
- out-of-order: buffer
- in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

♦ ACK(n)

otherwise:

ignore

Selective repeat in action

Selective repeat: dilemma

example:

- seq #'s: 0, 1, 2, 3
- window size=3
- receiver sees no difference in two scenarios!
- duplicate data accepted as new in (b)
- Q: what relationship between seq # size and window size to avoid problem in (b)?

receiver can't see sender side.
receiver behavior identical in both cases!
something's (very) wrong!

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size

full duplex data:

- bi-directional data flow in same connection
- MSS: maximum segment size
- connection-oriented:
 - handshaking (exchange of control msgs) inits sender, receiver state before data exchange
- flow controlled:
 - sender will not overwhelm receiver

TCP segment structure

TCP seq. numbers, ACKs

sequence numbers:

-byte stream "number" of first byte in segment's data

acknowledgements:

- -seq # of next byte expected from other side
- -cumulative ACK
- Q: how receiver handles outof-order segments
 - —A:TCP spec doesn't say, up to implementor

TCP seq. numbers, ACKs

simple telnet scenario

TCP round trip time, timeout

- Q: how to set TCP timeout value?
- longer than RTT
 - but RTT varies
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

Q: how to estimate RTT?

- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent
 measurements, not just
 current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- * typical value: $\alpha = 0.125$

TCP round trip time, timeout

- timeout interval: EstimatedRTT plus "safety margin"
 - large variation in EstimatedRTT -> larger safety margin
- estimate SampleRTT deviation from EstimatedRTT:

```
DevRTT = (1-\beta)*DevRTT + \beta*|SampleRTT-EstimatedRTT| (typically, \beta = 0.25)
```

TCP reliable data transfer

- TCP creates rdt service on top of IP's unreliable service
 - pipelined segments
 - cumulative acks
 - single retransmission timer
- retransmissions triggered by:
 - timeout events
 - duplicate acks

let's initially consider simplified TCP sender:

- ignore duplicate acks
- ignore flow control, congestion control

TCP sender events:

data rcvd from app:

- create segment with seq #
- seq # is byte-stream number of first data byte in segment
- start timer if not already running
 - think of timer as for oldest unacked segment
 - expiration interval: TimeOutInterval

timeout:

- retransmit segment that caused timeout
- restart timer

ack rcvd:

- if ack acknowledges previously unacked segments
 - update what is known to be ACKed
 - start timer if there are still unacked segments

TCP sender (simplified)

TCP: retransmission scenarios

TCP: retransmission scenarios

cumulative ACK

TCP ACK generation [RFC 5861]

event at receiver	TCP receiver action
arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed	delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK
arrival of in-order segment with expected seq #. One other segment has ACK pending	immediately send single cumulative ACK, ACKing both in-order segments
arrival of out-of-order segment higher-than-expect seq. # . Gap detected	immediately send <i>duplicate ACK</i> , indicating seq. # of next expected byte
arrival of segment that partially or completely fills gap	immediate send ACK, provided that segment starts at lower end of gap

TCP fast retransmit

- time-out period often relatively long:
 - long delay before resending lost packet
- detect lost segments via duplicate ACKs.
 - sender often sends many segments back-to-back
 - if segment is lost, there will likely be many duplicate
 ACKs.

TCP fast retransmit

if sender receives 3
ACKs for same data
("triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

likely that unacked segment lost, so don't wait for timeout

TCP fast retransmit

TCP flow control

too much, too fast

TCP flow control

 receiver "advertises" free buffer space by including rwnd value in TCP header of receiver-to-sender segments

- RcvBuffer size set via socket
 options (typical default is 4096 bytes)
- many operating systems autoadjustRcvBuffer
- sender limits amount of unacked ("in-flight") data to receiver's
 rwnd value
- guarantees receive buffer will not overflow

receiver-side buffering

Connection Management

before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters


```
Socket clientSocket =
  newSocket("hostname","port
  number");
```

```
connection state: ESTAB connection Variables: seq # client-to-server server-to-client rcvBuffer size at server, client
network
```

```
Socket connectionSocket =
  welcomeSocket.accept();
```

Agreeing to establish a connection

2-way handshake:

Q: will 2-way handshake always work in network?

- variable delays
- retransmitted messages (e.g. req_conn(x)) due to message loss
- message reordering
- can't "see" other side

Agreeing to establish a connection

2-way handshake failure scenarios:

ESTAB

accept

data(x+1)

TCP 3-way handshake

TCP 3-way handshake: FSM

TCP: closing a connection

- client, server each close their side of connection
 - send TCP segment with FIN bit = I
- respond to received FIN with ACK
 - on receiving FIN, ACK can be combined with own FIN
- simultaneous FIN exchanges can be handled

TCP: closing a connection

Principles of congestion control

congestion:

- informally: "too many sources sending too much data too fast for *network* to handle"
- different from flow control!
- manifestations:
 - lost packets (buffer overflow at routers)
 - long delays (queueing in router buffers)
- a top-10 problem!

two senders, two receivers

 one router, infinite buffers

output link capacity: R

no retransmission Host B

 maximum per-connection throughput: R/2

* large delays as arrival rate, λ_{in} , approaches capacity

- one router, finite buffers
- sender retransmission of timed-out packet
 - application-layer input = application-layer output: $\lambda_{in} = \lambda_{out}$
 - transport-layer input includes retransmissions : $\lambda'_{in} \ge \lambda_{in}$

idealization: perfect knowledge

• sender sends only when router buffers available

Idealization: known loss

packets can be lost, dropped at router due to full buffers

 sender only resends if packet known to be lost

Idealization: known loss

packets can be lost, dropped at router due to full buffers

 sender only resends if packet known to be lost

Realistic: duplicates

- packets can be lost, dropped at router due to full buffers
- sender times out prematurely, sending two copies, both of which are delivered

Realistic: duplicates

- packets can be lost, dropped at router due to full buffers
- sender times out prematurely, sending two copies, both of which are delivered

"costs" of congestion:

- more work (retrans) for given "goodput"
- unneeded retransmissions: link carries multiple copies of pkt
 - decreasing goodput

- four senders
- multihop paths
- timeout/retransmit

Q: what happens as λ_{in} and λ_{in} increase?

A: as red λ_{in} increases, all arriving blue pkts at upper queue are dropped, blue throughput $\rightarrow 0$

another "cost" of congestion:

when packet dropped, any "upstream transmission capacity used for that packet was wasted!

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion control:

- no explicit feedback from network
- congestion inferred from end-system observed loss, delay
- approach taken by TCP

network-assisted congestion control:

- routers provide feedback to end systems
 - -single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - –explicit rate for sender to send at

Case study: ATM ABR congestion control

ABR: available bit rate:

- "elastic service"
- if sender's path "underloaded":
 - sender should use available bandwidth
- if sender's path congested:
 - sender throttled to minimum guaranteed rate

RM (resource management) cells:

- sent by sender, interspersed with data cells
- bits in RM cell set by switches ("network-assisted")
 - NI bit: no increase in rate (mild congestion)
 - Cl bit: congestion indication
- RM cells returned to sender by receiver, with bits intact

Case study: ATM ABR congestion control

- two-byte ER (explicit rate) field in RM cell
 - congested switch may lower ER value in cell
 - senders' send rate thus max supportable rate on path
- EFCI bit in data cells: set to I in congested switch
 - if data cell preceding RM cell has EFCI set, receiver sets CI bit in returned RM cell

TCP Congestion Control

TCP congestion control: additive increase multiplicative decrease (AIMD)

- * approach: sender increases transmission rate (window size), probing for usable bandwidth, until loss occurs
 - additive increase: increase cwnd by I MSS every RTT until loss detected
 - multiplicative decrease: cut cwnd in half after loss

AIMD saw tooth behavior: probing for bandwidth

TCP Congestion Control: details

• sender limits transmission:

$$\begin{array}{ccc} LastByteSent- & \leq & cwnd \\ LastByteAcked & \end{array}$$

 cwnd is dynamic, function of perceived network congestion

TCP sending rate:

 roughly: send cwnd bytes, wait RTT for ACKS, then send more bytes

rate
$$\approx \frac{\text{cwnd}}{\text{RTT}}$$
 bytes/sec

TCP Slow Start

- when connection begins, increase rate exponentially until first loss event:
 - initially cwnd = I MSS
 - double cwnd every RTT
 - done by incrementing cwnd for every ACK received
- <u>summary:</u> initial rate is slow but ramps up exponentially fast

TCP: detecting, reacting to loss

- loss indicated by timeout:
 - cwnd set to 1 MSS;
 - window then grows exponentially (as in slow start) to threshold, then grows linearly
- loss indicated by 3 duplicate ACKs: TCP RENO
 - dup ACKs indicate network capable of delivering some segments
 - cwnd is cut in half window then grows linearly
- TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

TCP: switching from slow start to CA

Q: when should the exponential increase switch to linear?

A: when **cwnd** gets to 1/2 of its value before timeout.

Implementation:

- variable ssthresh
- on loss event, ssthresh is set to 1/2 of cwnd just before loss event

Summary: TCP Congestion Control

TCP throughput

- avg.TCP thruput as function of window size, RTT?
 - ignore slow start, assume always data to send
- W: window size (measured in bytes) where loss occurs
 - avg. window size (# in-flight bytes) is ³/₄ W
 - avg. thruput is 3/4W per RTT

avg TCP thruput =
$$\frac{3}{4} \frac{W}{RTT}$$
 bytes/sec

TCP Futures: TCP over "long, fat pipes"

- example: I500 byte segments, I00ms RTT, want I0 Gbps throughput
- requires W = 83,333 in-flight segments
- throughput in terms of segment loss probability, L [Mathis 1997]:

TCP throughput =
$$\frac{1.22 \cdot MSS}{RTT \sqrt{L}}$$

- → to achieve 10 Gbps throughput, need a loss rate of L = $2 \cdot 10^{-10} a$ very small loss rate!
- new versions of TCP for high-speed

TCP Fairness

fairness goal: if KTCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K

Why is TCP fair?

two competing sessions:

- additive increase gives slope of I, as throughout increases
- multiplicative decrease decreases throughput proportionally

Fairness (more)

Fairness and UDP

- multimedia apps often do not use TCP
 - do not want rate throttled by congestion control
- instead use UDP:
 - send audio/video at constant rate, tolerate packet loss

Fairness, parallel TCP connections

- application can open multiple parallel connections between two hosts
- web browsers do this
- e.g., link of rate R with 9 existing connections:
 - new app asks for ITCP, gets rate R/I0
 - new app asks for ITCPs, gets R/2

Chapter 3: summary

- principles behind transport layer services:
 - multiplexing,
 demultiplexing
 - reliable data transfer
 - flow control
 - congestion control
- instantiation, implementation in the Internet
 - UDP
 - TCP

next:

- leaving the network "edge" (application, transport layers)
- into the network "core"