
Software Defined Networking (SDN)

UG3 Computer Communications & Networks
(COMN)

Mahesh Marina
mahesh@ed.ac.uk

Slides copyright of Kurose and Ross

http://ed.ac.uk

Software defined networking (SDN)

• Internet network layer: historically has been
implemented via distributed, per-router
approach
– monolithic router contains switching hardware,

runs proprietary implementation of Internet
standard protocols (IP, RIP, IS-IS, OSPF, BGP) in
proprietary router OS (e.g., Cisco IOS)

– different “middleboxes” for different network layer
functions: firewalls, load balancers, NAT boxes, ..

• ~2005: renewed interest in rethinking network
control plane

5-2Network Layer: Control Plane

Recall: per-router control plane

Routing
Algorithm

Individual routing algorithm components in each and every
router interact with each other in control plane to compute
forwarding tables

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

5-3Network Layer: Control Plane

data
plane

control
plane

Recall: logically centralized control plane
A distinct (typically remote) controller interacts with local
control agents (CAs) in routers to compute forwarding tables

Remote Controller

CA

CA CA CA CA

5-4Network Layer: Control Plane

Software defined networking (SDN)

Why a logically centralized control plane?
• easier network management: avoid router

misconfigurations, greater flexibility of traffic flows
• table-based forwarding (OpenFlow API coming up

shortly) allows “programming” routers
– centralized “programming” easier: compute tables centrally

and distribute
– distributed “programming: more difficult: compute tables as

result of distributed algorithm (protocol) implemented in
each and every router

• open (non-proprietary) implementation of control
plane

• Enables and eases innovation

5-5Network Layer: Control Plane

Vertically integrated
Closed, proprietary

Slow innovation
Small industry

Specialized
Operating
System

Specialized
Hardware

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

App
Specialized
Applications

Horizontal
Open interfaces
Rapid innovation

Huge industry

Microprocessor

Open Interface

Linux Mac
OS

Windows
(OS) or or

Open Interface

Analogy: mainframe to PC evolution*

* Slide courtesy: N. McKeown 5-6Network Layer: Control Plane

Traffic engineering: difficult traditional routing

Q: what if network operator wants u-to-z traffic to flow along
uvwz, x-to-z traffic to flow xwyz?

A: need to define link weights so traffic routing algorithm
computes routes accordingly (or need a new routing algorithm)!

Link weights are only control “knobs”: wrong!
5-7Network Layer: Control Plane

2
2

1
3

1

1

2

5
3

5

v w

u z

yx

Traffic engineering: difficult

Q: what if network operator wants to split u-to-z
traffic along uvwz and uxyz (load balancing)?

A: can’t do it (or need a new routing algorithm)

5-8Network Layer: Control Plane

2
2

1
3

1

1

2

5
3

5

v w

u z

yx

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Traffic engineering: difficult

u

v

x

w

y

z

Q: what if w wants to route blue and red traffic
differently?

A: can’t do it (with destination based forwarding, and LS,
DV routing)

Networking 401

5-9Network Layer: Control Plane

Software defined networking (SDN)

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized“ flow-
based” forwarding
(e.g., OpenFlow)

2. control,
data plane
separation

3. control plane
functions
external to data-
plane switches

…4. programmable
control
applications

routing access
control

load
balance

5-10Network Layer: Control Plane

Generalized Forwarding and SDN

23
0100 1101

values in arriving
packet’s header

logically-centralized routing controller

1

control plane

data plane

Each router contains a flow table that is computed and
distributed by a logically centralized routing controller

local flow table
headers counters actions

4-11Network Layer: Data Plane

OpenFlow data plane abstraction

• flow: defined by header fields
• generalized forwarding: simple packet-handling rules

– Pattern: match values in packet header fields
– Actions: for matched packet: drop, forward, modify matched packet or

send matched packet to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

Flow table in a router (computed and distributed by
controller) define router’s match+action rules

4-12Network Layer: Data Plane

OpenFlow data plane abstraction

• flow: defined by header fields
• generalized forwarding: simple packet-handling rules

– Pattern: match values in packet header fields
– Actions: for matched packet: drop, forward, modify, matched packet or

send matched packet to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

1. src=1.2.*.*, dest=3.4.5.* à drop
2. src = *.*.*.*, dest=3.4.*.* à forward(2)
3. src=10.1.2.3, dest=*.*.*.* à send to controller

* : wildcard

OpenFlow: Flow Table Entries

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify Fields

Packet + byte counters

Link layer Network layer Transport layer

Examples
Destination-based forwarding:

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * * * 51.6.0.8 * * * port6

IP datagrams destined to IP address 51.6.0.8 should
be forwarded to router output port 6

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Forward

* * * * * * * * 22 drop

Firewall:

do not forward (block) all datagrams destined to TCP port 22

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Forward

* * * * 128.119.1.1 * * * * drop
do not forward (block) all datagrams sent by host 128.119.1.1

Examples
Destination-based layer 2 (switch) forwarding:

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * * * * * * port3

layer 2 frames from MAC address 22:A7:23:11:E1:02
should be forwarded to output port 6

22:A7:23:
11:E1:02

4-16Network Layer: Data Plane

OpenFlow abstraction

§ Router
• match: longest

destination IP prefix
• action: forward out

a link
§ Switch

• match: destination
MAC address

• action: forward or
flood

§ Firewall
• match: IP addresses

and TCP/UDP port
numbers

• action: permit or
deny

§ NAT
• match: IP address

and port
• action: rewrite

address and port

§ match+action: unifies different kinds of devices

4-17Network Layer: Data Plane

IP Src = 10.3.*.*
IP Dst = 10.2.*.* forward(3)

match action

ingress port = 2
IP Dst = 10.2.0.3
ingress port = 2
IP Dst = 10.2.0.4

forward(3)

match action

forward(4)
ingress port = 1
IP Src = 10.3.*.*
IP Dst = 10.2.*.*

forward(4)

match action

OpenFlow example

Host h1
10.1.0.1

Host h2
10.1.0.2

Host h4
10.2.0.4

Host h3
10.2.0.3

Host h5
10.3.0.5

s1 s2

s31
2

3 4

1

2

3
4

1

2
3

4

Host h6
10.3.0.6

controller

Example: datagrams from
hosts h5 and h6 should
be sent to h3 or h4, via s1
and from there to s2

SDN perspective: data plane switches

Data plane switches
• fast, simple, commodity switches

implementing generalized data-
plane forwarding (Section 4.4) in
hardware

• switch flow table computed,
installed by controller

• API for table-based switch
control (e.g., OpenFlow)
– defines what is controllable and

what is not

• protocol for communicating
with controller (e.g., OpenFlow)

data
plane

control
plane

SDN Controller
(network operating system)

…routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

5-19Network Layer: Control Plane

SDN perspective: SDN controller

SDN controller (network
OS):
§ maintain network state

information
§ interacts with network

control applications “above”
via northbound API

§ interacts with network
switches “below” via
southbound API

§ implemented as distributed
system for performance,
scalability, fault-tolerance,
robustness

data
plane

control
plane

SDN Controller
(network operating system)

…routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

5-20Network Layer: Control Plane

SDN perspective: control applications

network-control apps:
§ “brains” of control:

implement control functions
using lower-level services,
API provided by SDN
controller

§ unbundled: can be provided
by 3rd party: distinct from
routing vendor, or SDN
controller

data
plane

control
plane

SDN Controller
(network operating system)

…routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

5-21Network Layer: Control Plane

Network-wide distributed, robust state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…

…
OpenFlow SNMP…

network
graph intent

RESTful
API

…
Interface, abstractions for network control apps

SDN
controller

routing access
control

load
balance

Components of SDN controller

communication
layer:
communicate
between SDN
controller and
controlled
switches

Network-wide state
management
layer: state of
networks links,
switches, services:
a distributed
database

Interface layer to
network control
apps: abstractions
API

5-22Network Layer: Control Plane

OpenFlow protocol

• operates between
controller, switch

• TCP used to exchange
messages
– optional encryption

• three classes of
OpenFlow messages:
– controller-to-switch
– asynchronous (switch

to controller)
– symmetric (misc)

OpenFlow Controller

5-23Network Layer: Control Plane

OpenFlow: controller-to-switch messages

Key controller-to-switch messages
• features: controller queries switch

features, switch replies
• configure: controller queries/sets

switch configuration parameters
• modify-state: add, delete, modify

flow entries in the OpenFlow
tables

• packet-out: controller can send this
packet out of specific switch port

OpenFlow Controller

5-24Network Layer: Control Plane

OpenFlow: switch-to-controller messages

Key switch-to-controller messages
• packet-in: transfer packet (and its

control) to controller. See packet-
out message from controller

• flow-removed: flow table entry
deleted at switch

• port status: inform controller of a
change on a port.
Fortunately, network operators don’t “program” switches
by creating/sending OpenFlow messages directly.
Instead use higher-level abstraction at controller

OpenFlow Controller

5-25Network Layer: Control Plane

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph intent

RESTful
API

…

1

2

3

4

6

5

Dijkstra’s link-state
Routing

s1
s2

s3
s4

SDN: control/data plane interaction
example

S1, experiencing link failure
using OpenFlow port status
message to notify controller

1

SDN controller receives
OpenFlow message,
updates link status info

2

Dijkstra’s routing algorithm
application has previously
registered to be called when
ever link status changes. It
is called.

3

Dijkstra’s routing algorithm
access network graph info,
link state info in controller,
computes new routes

4

5-26Network Layer: Control Plane

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph intent

RESTful
API

…

1

2

3

4

6

5

Dijkstra’s link-state
Routing

s1
s2

s3
s4

SDN: control/data plane interaction example

link state routing app
interacts with flow-table-
computation component in
SDN controller, which
computes new flow tables
needed

5

Controller uses OpenFlow
to install new tables in
switches that need updating

6

5-27Network Layer: Control Plane

topology
manager

Basic Network Service Functions

REST API

OpenFlow 1.0 … SNMP OVSDB

forwarding
manager

switch
manager

host
manager

stats
manager

Network
service apps

Service Abstraction Layer (SAL)

Access
Control

Traffic
Engineering

…

OpenDaylight (ODL) controller

§ ODL Lithium
controller

§ network apps may
be contained
within, or be
external to SDN
controller

§ Service
Abstraction Layer:
interconnects
internal, external
applications and
services

5-28Network Layer: Control Plane

Network
control apps

…

REST API

ONOS
distributed
core

southbound
abstractions,
protocolsOpenFlow Netconf OVSDB

device link host flow packet

northbound
abstractions,
protocols

Intent

statisticsdevices

hosts

links

paths flow rules topology

ONOS controller

§ control apps
separate from
controller

§ intent framework:
high-level
specification of
service: what
rather than how

§ considerable
emphasis on
distributed core:
service reliability,
replication
performance
scaling

5-29Network Layer: Control Plane

SDN: selected challenges

• hardening the control plane: dependable,
reliable, performance-scalable, secure
distributed system
– robustness to failures: leverage strong theory of

reliable distributed system for control plane
– dependability, security: “baked in” from day one?

• networks, protocols meeting mission-specific
requirements
– e.g., real-time, ultra-reliable, ultra-secure

• Internet-scaling

5-30Network Layer: Control Plane

