
The Network Layer: Part II

These slides are adapted from those provided
by Jim Kurose and Keith Ross with their book

“Computer Networking: A Top-Down
Approach (6th edition).”

Outline
 Network layer functions, mainly forwarding and

routing
 Network layer services
 Datagram vs. Virtual circuit networks
 Router architectures and design issues
 IPv4 (incl. fragmentation)
 Internet addressing, DHCP and NAT
 IPv6
 ICMP
 Routing algorithms (link state, distance vector,

hierarchical)
 Routing in the Internet (OSPF, BGP)

IPv6 Motivations
 initial motivation: 32-bit IPv4 address space was

getting used up quickly.

 additional motivations:
 header format helps speed processing/forwarding
 header changes to facilitate QoS

 IPv6:
 IP address size increased from 32 bits to 128 bits
 fixed-length 40 byte header
 fragmentation not allowed, no header checksum, options

left out of the standard header
 flow labels and priorities

IPv6 Datagram Format

priority: identify priority among datagrams in flow
flow label: identify datagrams in same “flow.”
 (concept of“flow” not well defined).
next header: identify upper layer protocol for data

data

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit
flow label pri ver

32 bits

ver length

32 bits

data
(variable length,
typically a TCP

or UDP segment)

16-bit identifier
header

 checksum
time to

live

32 bit source IP address

head.
len

type of
service

flgs fragment
 offset

upper
 layer

32 bit destination IP address
options (if any)

Cf. IPv4 Datagram Format
IP protocol version

number

header length
 (bytes)

upper layer protocol
to deliver payload to

total datagram
length (bytes)

“type” of data
for
fragmentation/
reassembly max number

remaining hops
(decremented at

each router)

e.g. timestamp,
record route
taken, specify
list of routers
to visit.

Transition from IPv4 to IPv6
 declaring a flag day to switch all routers from IPv4 to

IPv6 impractical
 how will network operate with mixed IPv4 and IPv6

routers?
1. dual-stack approach: IPv6 capable routers also support IPv4

• Shortcoming: protocol conversion between IPv6 and IPv4 packets
causes loss of header fields

2. tunneling approach: IPv6 datagram carried as payload in IPv4
datagram among IPv4 routers

IPv4 source, dest addr
IPv4 header fields

IPv4 datagram
IPv6 datagram

IPv4 payload

UDP/TCP payload
IPv6 source dest addr

IPv6 header fields

Tunneling Illustrated

physical view:
IPv4 IPv4

A B

IPv6 IPv6

E

IPv6 IPv6

F C D

logical view:

IPv4 tunnel
connecting IPv6 routers E

IPv6 IPv6

F A B

IPv6 IPv6

flow: X
src: A
dest: F

data

A-to-B:
IPv6

Flow: X
Src: A
Dest: F

data

src:B
dest: E

B-to-C:
IPv6 inside

IPv4

E-to-F:
IPv6

flow: X
src: A
dest: F

data

B-to-C:
IPv6 inside

IPv4

Flow: X
Src: A
Dest: F

data

src:B
dest: E

physical view:
A B

IPv6 IPv6

E

IPv6 IPv6

F C D

logical view:

IPv4 tunnel
connecting IPv6 routers E

IPv6 IPv6

F A B

IPv6 IPv6

Tunneling Illustrated

IPv4 IPv4

Outline
 Network layer functions, mainly forwarding and

routing
 Network layer services
 Datagram vs. Virtual circuit networks
 Router architectures and design issues
 IPv4 (incl. fragmentation)
 Internet addressing, DHCP and NAT
 IPv6
 ICMP
 Routing algorithms (link state, distance vector,

hierarchical)
 Routing in the Internet (OSPF, BGP)

Internet Control Message Protocol (ICMP)

 used by hosts & routers to
communicate network-
layer information
 Typically for error reporting

(e.g., unreachable
host/network/port/protocol)

 But other uses too (e.g., ping
via echo request/reply)

 network-layer “above” IP:
 ICMP messages carried in IP

datagrams
 ICMP message: type, code

plus first 8 bytes of IP
datagram causing error

Type Code description
0 0 echo reply (ping)
3 0 dest. network unreachable
3 1 dest host unreachable
3 2 dest protocol unreachable
3 3 dest port unreachable
3 6 dest network unknown
3 7 dest host unknown
4 0 source quench (congestion
 control - not used)
8 0 echo request (ping)
9 0 route advertisement
10 0 router discovery
11 0 TTL expired
12 0 bad IP header

ICMP Example: Traceroute
 source sends series of UDP

segments to dest using an
unlikely dest port number
 first set has TTL=1
 second set has TTL=2, and so

on.
 when nth set of datagrams

arrives at nth router:
 router discards datagrams
 sends back ICMP “TTL

expired” messages (type 11,
code 0) to source

 ICMP messages include name
of router & IP address

 when ICMP messages
arrives, source records
RTTs

stopping criteria:
 UDP segment eventually

arrives at destination host
 destination returns ICMP

“port unreachable”
message (type 3, code 3)

 source stops

3 probes

3 probes

3 probes

ICMPv6

 New version of ICMP for IPv6
 added new message types, e.g., “Packet Too Big”
 includes multicast group management functions that

were previously part of Internet Group Management
Protocol (IGMP)

Outline
 Network layer functions, mainly forwarding and

routing
 Network layer services
 Datagram vs. Virtual circuit networks
 Router architectures and design issues
 IPv4 (incl. fragmentation)
 Internet addressing, DHCP and NAT
 IPv6
 ICMP
 Routing algorithms (link state, distance vector,

hierarchical)
 Routing in the Internet (OSPF, BGP)

1

2 3

IP destination address in
arriving packet’s header

routing algorithm

local forwarding table
dest address output link

address-range 1
address-range 2
address-range 3
address-range 4

3
2
2
1

Interplay between Routing & Forwarding

routing algorithm determines
end-end-path through network

forwarding table determines
local forwarding at this router

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph Abstraction

Graph Abstraction: Costs

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5
c(x,x’) = cost of link (x,x’)
 e.g., c(w,z) = 5

cost could always be 1, or
inversely related to bandwidth, or
or inversely related to congestion, or
some other metric or combination thereof

cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Key question: what is the least-cost path between u and z
(more generally, between a given pair of nodes/routers)?
Routing algorithm: algorithm that finds that least cost path

Routing Algorithms: Various Classifications

Global vs. Decentralized
state/information

global:
 all routers have complete

topology, link cost info
 “link state” algorithms
decentralized:
 router knows physically-

connected neighbors, link
costs to neighbors

 iterative process of
computation, exchange of
info with neighbors

 e.g., “distance vector”
algorithms

Static vs. Dynamic
static:
 manual set routes, assume

routes change at human
timescales

dynamic:
 routes change more

quickly in response to
topology or load changes
 periodic
 event-driven, e.g., in

response to link cost
changes

Load sensitive vs. load
insensitive

Link-State Routing Algorithms

 net topology, link costs
known to all nodes
 accomplished via “link state

broadcast”
 all nodes have same info

 each node computes least
cost paths from itself
(“source”) to all other nodes
 gives forwarding table for that

node
 Dijkstra’s algorithm: iterative,

i.e., after k iterations, know
least cost path to k
destinations

notation:
 c(x,y): link cost from

node x to y; = ∞ if not
direct neighbors

 D(v): current value of
cost of path from source
to dest. v

 p(v): predecessor node
along path from source to
v

 N': set of nodes whose
least cost path definitively
known

Dijsktra’s Algorithm

1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N':
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

w 3

4

v

x

u

5

3
7 4

y
8

z
2

7
9

Dijkstra’s Algorithm: Example

Step

N'
D(v)

p(v)
0
1
2
3
4
5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u
uw ∞ 11,w 6,w 5,u

14,x 11,w 6,w uwx
uwxv 14,x 10,v

uwxvy 12,y

notes:
 construct shortest path tree by

tracing predecessor nodes
 ties can exist (can be broken

arbitrarily)

uwxvyz

Dijkstra’s Algorithm: Another Example

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5

Dijkstra’s Algorithm: Another Example (2)

u

y x

w v

z

resulting shortest-path tree from u:

v
x
y
w
z

(u,v)
(u,x)

(u,x)
(u,x)
(u,x)

destination link

resulting forwarding table in u:

Dijkstra’s Algorithm: Discussion
algorithm complexity: n nodes
 each iteration: need to check all nodes, w, not in N’
 n(n+1)/2 comparisons: O(n2)
 more efficient implementations possible: O(nlogn)

oscillations possible (not a unique problem with
LS/Dijkstra though):

 e.g., suppose link cost equals amount of carried traffic:

A
D

C

B
1 1+e

e 0

e
1 1

0 0

initially

A
D

C

B

given these costs,
find new routing….

resulting in new costs

2+e 0

0 0
1+e 1

A
D

C

B

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e 1
0 0

A
D

C

B

given these costs,
find new routing….

resulting in new costs

2+e 0

0 0
1+e 1

Distance Vector Algorithms

A class of decentralised routing algorithms that are
based on Bellman-Ford equation (dynamic programming)

let
 dx(y) := cost of least-cost path from x to y
then
 dx(y) = min {c(x,v) + dv(y) }

v

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y

Bellman-Ford Example

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5
clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),
 c(u,x) + dx(z),
 c(u,w) + dw(z) }
 = min {2 + 5,
 1 + 3,
 5 + 3} = 4

neighbour providing minimum distance estimate is chosen
as the next hop and used in forwarding table

B-F equation says:

Distance Vector Algorithm

 node x:
 knows cost to each neighbor v: c(x,v)
 maintains its neighbours’ distance vectors. For

each neighbour v, x maintains
Dv = [Dv(y): y є N]

 Dx(y) = estimate of least cost from x to y
 x computes distance vector Dx = [Dx(y): y є N] based

on c(x,v) and Dv from all neighbours v using the
Bellman-Ford equation

key idea:
 from time-to-time, each node sends its own distance

vector estimate to neighbours
 when x receives new DV estimate from neighbour, it

updates its own DV using B-F equation:

Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

 under minor, natural conditions, the estimate Dx(y)
converges to the actual least cost dx(y)

Distance Vector Algorithm (2)

iterative, asynchronous: each
local iteration caused by:
 local link cost change
 DV update message from

neighbour

distributed:
 each node notifies

neighbours only when its DV
changes
 neighbours then notify their

neighbours if necessary

wait for (change in local link
cost or msg from neighbour)

recompute estimates

if DV to any dest has
changed, notify neighbours

each node:

Distance Vector Algorithm (3)

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to

fro
m

fro

m

x y z

x
y
z

0

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

time

x z
1 2

7

y

node x
table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
 Dy(z), c(x,z) + Dz(z)}
= min{2+1 , 7+0} = 3

3 2

node y
table

node z
table

cost to

fro
m

x y z

x
y
z

0 2 3

fro
m

cost to

x y z

x
y
z

0 2 7

fro
m

cost to

x y z

x
y
z

0 2 3

fro
m

cost to

x y z

x
y
z

0 2 3
fro

m

cost to
x y z

x
y
z

0 2 7

fro
m

cost to

2 0 1
7 1 0

2 0 1
3 1 0

2 0 1
3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

time

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to

fro
m

fro

m

x y z

x
y
z

0

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

time

x z
1 2

7

y

node x
table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
 Dy(z), c(x,z) + Dz(z)}
= min{2+1 , 7+0} = 3

3 2

node y
table

node z
table

cost to

fro
m

Distance Vector: Link Cost Changes

link cost changes:
 node detects local link cost change
 updates routing info, recalculates

distance vector
 if DV changes, notifies neighbours

“good
news
travels
fast”

x z
1 4

50

y
1

t0 : y detects link-cost change, updates its DV, informs its
neighbours.
 t1 : z receives update from y, updates its table, computes new
least cost to x, sends its neighbours its DV.

t2 : y receives z’s update, updates its distance table. y’s least costs
do not change, so y does not send a message to z.

Distance Vector: Link Cost Changes

link cost changes:
 node detects local link cost change
 bad news travels slow – “counting to

infinity” problem!
 44 iterations before algorithm

stabilizes for the example on the right

x z
1 4

50

y
60

poisoned reverse:
 If Z routes through Y to get to X :

 Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to
X via Z)

 will this completely solve counting to infinity
problem?

Comparison of LS and DV Algorithms

message complexity
 LS: with n nodes, E links, O(nE)

msgs sent
 DV: exchange between neighbours

only
 convergence time varies

speed of convergence
 LS: O(n2) algorithm requires O(nE)

msgs
 may have oscillations if metric

load sensitive (same applies for
vanilla DV too)

 DV: convergence time varies
 routing loops possible, e.g.,

counting-to-infinity problem

robustness: what happens if
router malfunctions?

LS:
 node can advertise incorrect

link cost
 each node computes only its

own table
DV:

 DV node can advertise
incorrect path cost

 each node’s table used by
others  errors propagate
through the network

Hierarchical Routing

scale: with 600 million
destinations:

 can’t store all destinations
in routing tables!

 routing table exchange
would swamp links!

administrative autonomy
 internet = network of

networks
 each network admin may

want to control routing in
its own network

our routing study thus far assumes:
 all routers identical
 network structure “flat”
… not true in practice

 aggregate routers into
regions, “autonomous
systems” (AS)

 routers in same AS
run same routing
protocol
 “intra-AS” routing

protocol
 routers in different AS

can run different intra-
AS routing protocols

gateway router:
 at “edge” of its own AS
 has link to router in

another AS

Hierarchical Routing

3b

1d

3a

1c
2a AS3

AS1
AS2

1a

2c
2b

1b

Intra-AS
Routing
algorithm

Inter-AS
Routing
algorithm

Forwarding
table

3c

Interconnected ASes

 forwarding table
configured by both intra-
and inter-AS routing
algorithm
 intra-AS sets entries

for internal dests
 inter-AS & intra-AS

sets entries for
external dests

Inter-AS Tasks
 suppose router in AS1

receives datagram
destined outside of AS1:
 router should forward

packet to gateway
router, but which one?

AS1 must:
1. learn which dests are

reachable through AS2,
which through AS3

2. propagate this
reachability info to all
routers in AS1

job of inter-AS routing!

AS3

AS2

3b

3c
3a

AS1

1c
1a

1d
1b

2a
2c

2b
other
networks

other
networks

Example: setting forwarding table in router 1d

 suppose AS1 learns (via inter-AS protocol) that subnet x
reachable via AS3 (gateway 1c), but not via AS2
 inter-AS protocol propagates reachability info to all internal

routers
 router 1d determines from intra-AS routing info that its

interface I is on the least cost path to 1c
 installs forwarding table entry (x,I)

AS3

AS2

3b

3c
3a

AS1

1c
1a

1d
1b

2a
2c

2b
other
networks

other
networks

x

Example: choosing among multiple ASes

 now suppose AS1 learns from inter-AS protocol that subnet
x is reachable from AS3 and from AS2.

 to configure forwarding table, router 1d must determine
which gateway it should forward packets towards for dest x
 this is also job of inter-AS routing protocol!

AS3

AS2

3b

3c
3a

AS1

1c
1a

1d
1b

2a
2c

2b
other
networks

other
networks

x

?

learn from inter-AS
protocol that subnet
x is reachable via
multiple gateways

use routing info
from intra-AS

protocol to determine
costs of least-cost

paths to each
of the gateways

hot potato routing:
choose the gateway

that has the
smallest least cost

determine from
forwarding table the
interface I that leads

to least-cost gateway.
enter (x,I) in

forwarding table

Example: choosing among multiple ASes

 now suppose AS1 learns from inter-AS protocol that subnet
x is reachable from AS3 and from AS2.

 to configure forwarding table, router 1d must determine
towards which gateway it should forward packets for dest x
 this is also job of inter-AS routing protocol!

 hot potato routing: send packet towards closest of two
routers.

Outline
 Network layer functions, mainly forwarding and

routing
 Network layer services
 Datagram vs. Virtual circuit networks
 Router architectures and design issues
 IPv4 (incl. fragmentation)
 Internet addressing, DHCP and NAT
 IPv6
 ICMP
 Routing algorithms (link state, distance vector,

hierarchical)
 Routing in the Internet (RIP, OSPF, BGP)

Intra-AS Routing

 also known as interior gateway protocols (IGP)
 most common intra-AS routing protocols:
 RIP: Routing Information Protocol
 OSPF: Open Shortest Path First
 IGRP: Interior Gateway Routing Protocol

(Cisco proprietary)

RIP (Routing Information Protocol)

 included in BSD-UNIX distribution in 1982
 distance vector algorithm

 distance metric: # hops (max = 15 hops), each link has cost 1
 DVs exchanged with neighbors every 30 sec in response message (aka

advertisement)
 each advertisement: list of up to 25 destination subnets (in IP addressing

sense)

D C

B A
u v

w

x

y
z

subnet hops
 u 1
 v 2
 w 2
 x 3
 y 3
 z 2

from router A to destination subnets:

RIP: example

destination subnet next router # hops to dest
 w A 2
 y B 2
 z B 7
 x -- 1
 …. ….

routing table in router D

w x y
z

A

C

D B

w x y
z

A

C

D B

destination subnet next router # hops to dest
 w A 2
 y B 2
 z B 7
 x -- 1
 …. ….

routing table in router D

A 5

 dest next hops
 w - 1
 x - 1
 z C 4
 …. … ...

A-to-D advertisement

RIP: example

RIP: link failure, recovery
if no advertisement heard after 180 sec -->

neighbor/link declared dead
 routes via neighbor invalidated
 new advertisements sent to neighbors
 neighbors in turn send out new advertisements (if tables

changed)
 link failure info quickly (?) propagates to entire net
 poison reverse used to prevent ping-pong loops (infinite

distance = 16 hops)

RIP table processing

 RIP routing tables managed by application-level
process called route-d (daemon)

 advertisements sent in UDP packets, periodically
repeated

physical
link

network forwarding
 (IP) table

transport
 (UDP)

routed

physical
link

network
 (IP)

transprt
 (UDP)

routed

forwarding
table

	The Network Layer: Part II
	Outline
	IPv6 Motivations
	IPv6 Datagram Format
	Cf. IPv4 Datagram Format
	Transition from IPv4 to IPv6
	Tunneling Illustrated
	Tunneling Illustrated
	Outline
	Internet Control Message Protocol (ICMP)
	ICMP Example: Traceroute
	ICMPv6
	Outline
	Interplay between Routing & Forwarding
	Graph Abstraction
	Graph Abstraction: Costs
	Routing Algorithms: Various Classifications
	Link-State Routing Algorithms
	Dijsktra’s Algorithm
	Slide Number 20
	Dijkstra’s Algorithm: Another Example
	Dijkstra’s Algorithm: Another Example (2)
	Dijkstra’s Algorithm: Discussion
	Distance Vector Algorithms
	Bellman-Ford Example
	Distance Vector Algorithm
	Distance Vector Algorithm (2)
	Distance Vector Algorithm (3)
	Slide Number 29
	Slide Number 30
	Distance Vector: Link Cost Changes
	Distance Vector: Link Cost Changes
	Comparison of LS and DV Algorithms
	Hierarchical Routing
	Hierarchical Routing
	Interconnected ASes
	Inter-AS Tasks
	Example: setting forwarding table in router 1d
	Example: choosing among multiple ASes
	Example: choosing among multiple ASes
	Outline
	Intra-AS Routing
	RIP (Routing Information Protocol)
	RIP: example
	RIP: example
	RIP: link failure, recovery
	RIP table processing

