Multimedia Networking

Network Support for Multimedia Applications

Protocols for Real Time Interactive Applications

- Differentiated Services (DiffServ)
- Per Connection Quality of Services Guarantees (IntServ)

Differentiated Services Introduction

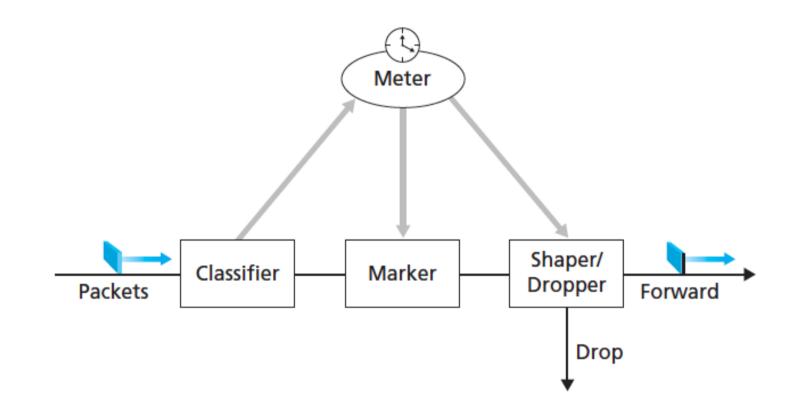
- Ability to handle different classes of traffic in different ways within the Internet in a scalable manner.
- Millions of simultaneous source-destination traffic flows may be present at a backbone router.
- Scalability is met by placing only simple functionality within the network core, with more complex control operations being implemented at the network's edge

Differentiated Services Functional Elements

- *Edge Functions*:
 - Packet classification
 - At the incoming edge of the network (that is, at either a Diffservcapable host that generates traffic or at the first Diffserv-capable router that the traffic passes through), arriving packets are marked.
 - Differentiated Services (DS) field in IPv4 (Type of services) and IPv6 (Traffic class) header is set to some value.
 - DSCP: DiffServ Code Point (6 bits)
 - Traffic conditioning
 - Packet marking, metering, testing with contracted profile, shaping and dropping.

ToS byte in IPv4 header or TC byte in IPv6 header

- Traffic Profile:
 - Some of the end-nodes have an upper bound on their sending rate
 - E.g. a limit on peak rate or burstiness of the packer flow
 - As long as the user sends packets into the network in a way that conforms to the negotiated traffic profile, the packets receive their priority marking and are forwarded along their route to the destination.
 - On the other hand, if the traffic profile is violated, out-of-profile packets might be marked differently, might be shaped (for example, delayed so that a maximum rate constraint would be observed), or might be dropped at the network edge

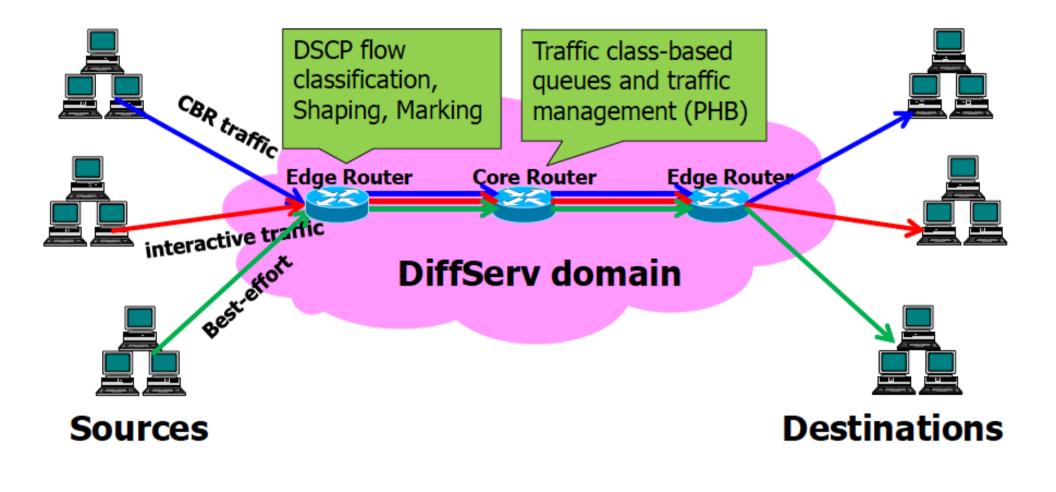


- Metering Function:
 - It is to compare the incoming packet flow with the negotiated traffic profile and
 - To determine whether a packet is within the negotiated traffic profile.
 - The actual decision about whether to immediately remark, forward, delay, or drop a packet is a policy issue determined by the network administrator and is not specified in the Diffserv architecture.

Traffic Conditioning at Edge Router

Differentiated Services Functional Elements

- Core Functioning:
 - Forwarding
 - When a DS-marked packet arrives at a Diffserv capable router, the packet is forwarded onto its next hop according to the so-called perhop behavior (PHB) associated with that packet's class.
 - The per-hop behavior influences how a router's buffers and link bandwidth are shared among the competing classes of traffic.
 - A crucial tenet of the Diffserv architecture is that a router's per-hop behavior will be based only on packet markings, that is, the class of traffic to which a packet belongs.



- Per-hop behavior (PHB):
 - A PHB can result in different classes of traffic receiving different performance (that is, different externally observable forwarding behaviors).
 - While a PHB defines differences in performance (behavior) among classes, it does not mandate any particular mechanism for achieving these behaviors.
 - E.g, a PHB would not require that a particular packet-queuing discipline (for example, a priority queue versus a WFQ queue versus a FCFS queue) be used to achieve a particular behavior.
 - Differences in performance must be observable and hence measurable.

Differentiated Services Functional Elements

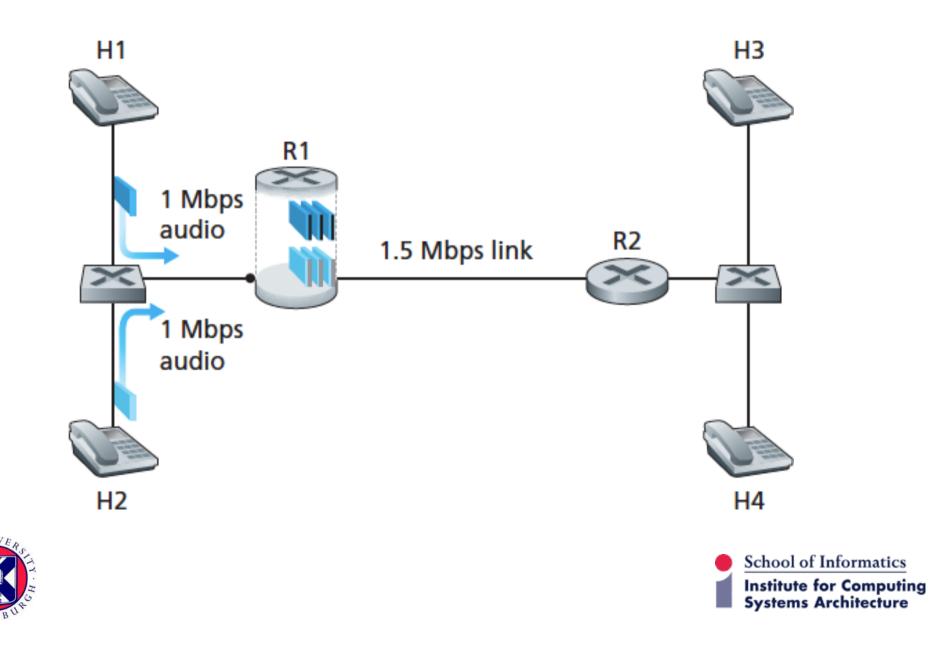
Differentiated Services Two PHBs

- *Expedited Forwarding PHB:*
 - The departure rate of a class of traffic from a router must equal or exceed a configured rate.
 - EF is supported by a specific queue at the router
- Assured Forwarding PHB:
 - Divides traffic into four classes
 - Each AF class will have its own queue at the router
 - Each AF class is guaranteed to be provided with some minimum amount of bandwidth and buffering such that

 \rightarrow AF1 > AF2 > AF3 > AF4

Differentiated Services End-End DiffServ

- In order to provide end-to-end Diffserv service:
 - All the ISPs between the end systems must not only provide this service, but most also cooperate and make settlements in order to offer end customers true end-to-end service.
- Second, if Diffserv were actually in place and the network ran at only moderate load:
 - Most of the time there would be no perceived difference between a besteffort service and a Diffserv.



- In DiffServ with proper network dimensioning, the highest class of service can:
 - Indeed achieve extremely low packet loss and delay—essentially circuit-like performance.
 - But can the network guarantee that an ongoing flow in a highpriority traffic class will continue to receive such service throughout the flow's duration using only the mechanisms that we have described so far?
 - It cannot
- Why additional network mechanisms and protocols are required for a hard service to individual connections.

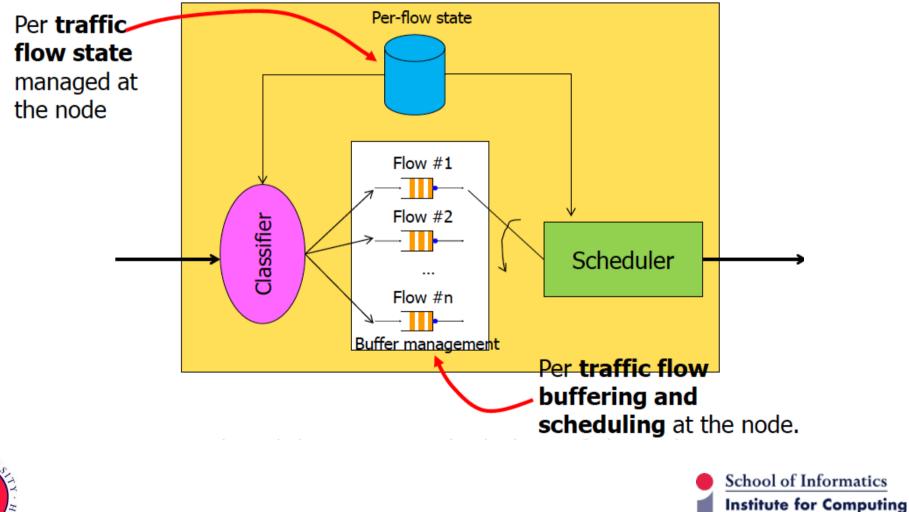
<u>Integrated Services</u> <u>Per-connection Quality of Service (QoS) Gaurantee</u>

- Ex: Two audio applications
 - Each transmitting at 1Mbps
 - Sharing 1.5Mbps
 - Each is belonging from same class
 - The router will treat each similarly
 - Each traffic stream will loose 25% of its packets
 - It is unacceptable QoS, both applications are unusable.

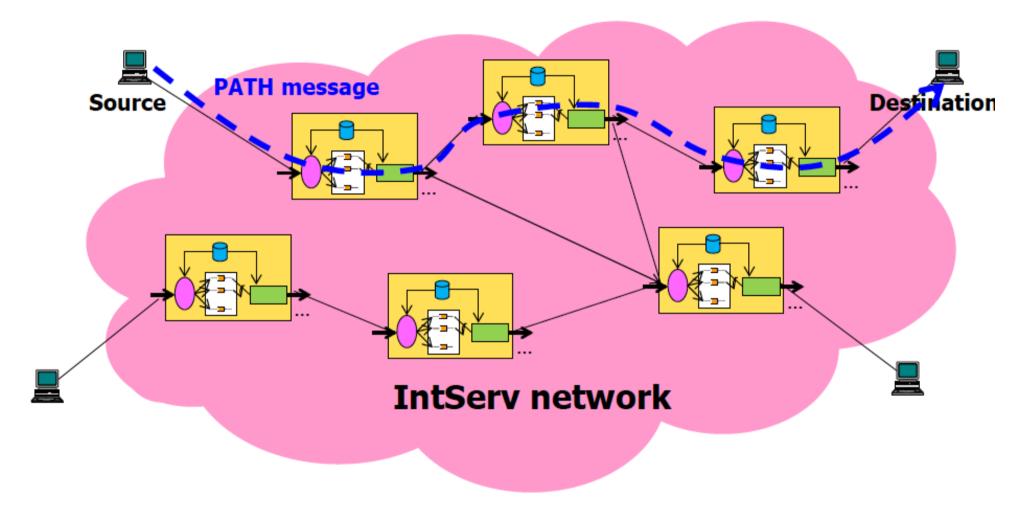
- Ex: Two audio applications
 - Both the applications cannot be satisfied simultaneously
 - Question: How to resolve the problem?
 - Answer: One of the application flow be blocked [Telephone network is an example]
 - By explicitly admitting or blocking flows based on their resource requirements, the network can guarantee that admitted flows will be able to receive their requested QoS.
- Call Admission:
 - A flow declares about the resources it will need for a flow
 - The network either accepts or rejects the flow

- Ensuring an application flow gets its desired QoS
- Resource Reservation
 - To guarantee a call gets its desired QoS from a network, it must specify:
 - > The resources that it needs (e.g. link bandwidth, buffers etc)
 - Once call reserves the resources; it has on demand access the the resources throughout its duration.
 - If a call reserves and receives a guarantee of x Mbps of link bandwidth, and never transmits at a rate greater than x, the call will see loss- and delay-free performance.

- Ensuring an application flow gets its desired QoS
- Call Admission
 - Since resources are not infinite; the call application when asks for resources
 - > The network accepts it, if resources are available.
 - Or blocks the call if there are not enough resources. In such a case the call application may try again and again until required resources are available (i.e. released by others).



- Ensuring an application flow gets its desired QoS
- Call setup signaling:
 - A signaling protocol is needed to ensure
 - ➤ the per-hop allocation of local resources,
 - ➤ as well as the overall end-to-end decision of whether or not the call has been able to reserve sufficient resources at each and every router on the end-to-end path.
 - RSVP protocol is a call setup protocol,
 - ≻ In ATM network; Q2931b does this job



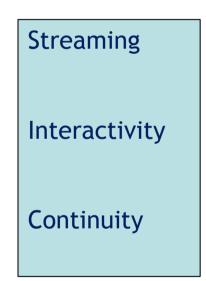
<u>Integrated Services</u> <u>Per-connection Quality of Service (QoS) Gaurantee</u>

Systems Architecture

Quality of Service (QoS) Guarantee

	Best-Effort	DiffServ	IntServ
Service	Connectivity No isolation No guarantees	Per-aggregation isolation Per-aggregation guarantee	Per-flow isolation Per-flow guarantee
Service Scope	End-to-end	Domain	End-to-end
Complexity	No set-up	Long term setup	Per-flow setup
Scalability	Highly scalable (nodes maintain only routing state)	Scalable (edge routers maintains per-aggregate state; core routers per-class state)	Not scalable (each router maintains per-flow state)

• Types of Data


- Audio
 - Analog to Digital Conversion
 - Encoding Schemes
 - □ Pulse Code Modulation (Sampling, Quantization)
 - □ MP₃ (Filters out unintelligible frequencies)
- Video
 - Consist of Frames/ second
 - ➢ Each frame is an image
 - Compression/ Encoding
 - □ Exploits Spatial Redundancy (e.g. JPEG)
 - □ Exploits Temporal Redundancy (e.g. MPEG)

• Type of Applications

- Streaming Stored Audio/video
 - ➤ UDP streaming
 - ➢ HTTP streaming (HTTP/TCP)
 - Adaptive HTTP streaming (HTTP/TCP)
- Stream Live Audio/video
 - Multiple unicast IP
 - ➤ Multi-cast IP
 - Application layer P2P/ CDN
- Conversational VoIP
 - ≻ RTP/UDP, TCP
 - ➢ FEC, Interleaving, Error Concealment
 - Playout Delay

Video/Audio Distribution

- Content Delivery Network
- Peer to Peer Network
- Conversational VoIP Protocols
 - Real-Time Protocol (RTP) for audio/video transfer
 - Real-Time Interactive Protocol (RTCP) for control messages
 - Session Initiation Protocol (Enables Conversational VoIP)
 - ➢ E-mail like addresses
 - ➤ Terminals
 - ➢ Proxy
 - ➢ Registrar
 - H.323

- ➤ A suite of protocols
- ➢ Terminals, Gatekeeper, MCU and Gateway

- Guarantee QoS
 - Best Effort Network
 - Multiple Classes
 - Per-connection QoS guarantee

