Tutorial for coursework Part 2

UG3 Computer Communications & Networks
(COMN)

Myungjin Lee
myungjin.lee@ed.ac.uk

Overview

To understand the purpose of multithreading
To describe Java's multithreading mechanism

To explain concurrency issues caused by
multithreading

To outline synchronized access to shared
resources

What is multithreading?

« Multithreading is similar to multi-processing

« A multi-processing OS can run several processes
at the same time
— Each process has its own address/memory space
— Separate processes to not have access to each other's

memory space

* |n a multithreaded application, there are several
points of execution within the same memory space
— Each point of execution is called a thread
— Threads share access to memory

Thread Support in Java

 The Java Virtual machine has its own runtime
threads

— Used for garbage collection

* Threads are represented by a Thread class
— Athread object maintains the state of the thread
— It provides control methods such as interrupt, start,
sleep, yield, wait
 When an application executes, the main method is
executed by a single thread

— If the application requires more threads, the application
must create them

Thread States

« Threads can be in one of four states
— Created, Running, Blocked, and Dead

* Athread's state changes based on:
— Control methods such as start, sleep, yield, wait, notify
— Termination of the run method

notify()
Thread()}@staﬂ() R @ < q Blocked
sleep()

wait()

run() method
terminates

How does a thread run?

* The thread class has a run() method

— run() is executed when the thread's start() method is
invoked

 The thread terminates if the run method terminates

— run() method often has an endless loop to prevent thread
termination

* One thread starts another by calling its start method

Threadl » Thread?2

/ start()

Thread Object

Creating your own Threads

A way to create your own threads is to subclass the
Thread class and then override the run() method

— This is the easiest way to do it although not recommended
The object which provides the run method is usually a
subclass of some other class

— If it inherits from another class, it cannot inherit from Thread
The solution to this problem is Runnable interface

— Runnable defines one method - public void run()

— Thread class constructor can take a reference to a Runnable
object

— When the thread is started, it invokes the run method in the
runnable object instead of its own run method

Using Runnable

 When the Thread object is instantiated, it is passed
a reference to a "Runnable” object

— The Runnable object must implement the “run” method
* When the thread object receives a start message,
it checks if it has a reference to a Runnable object:

— If it does, it runs the "run" method of that object
— If not, it runs its own "run" method

/start()\

Thread Object

run()

N

Threadl

» Thread?2

Example Code

public class thdexpl {

pUbliC static int count = 0; EEEEEEEEEEEEEEEEED

private static class MyThreadgimplements Runnable ¥
IIII.IIIII.IIIIIID 4asissEnnsnennnnnnnn?
s public void run()={
.IIIIFI.IIIIIIIII
1

w e (count <= 10) {
System.out.println("MyThread: " + count++);
try {

Thread.sleep (100);
} catch (InterruptedException e) {}

Example Code

public static void main(String[] args) {

« PY LGN ORE o REINGL f o §hAGLINGL ¥3in Thread...");

. MyThread mythd = new MyThread();
: Thread t = new Thread (mythd);
' t.start();

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
while (count <= 10

asmsnnn?®

System.out.println ("MainThread:

try {
Thread.sleep (100);

} catch (InterruptedException e) {}

+ count++);

10

Creating Multiple Threads

* The previous example illustrates a Runnable class
which creates its own thread when the start
method is invoked

* To create multiple threads, one could simple create
multiple instances of the Runnable class and send
each object a start message

— Each instance would create its own thread object

Synchronization

Critical Sections / Mutual Exclusion

Sequences of instructions that may get incorrect
results if executed simultaneously are called critical
sections

(We also use the term race condition to refer to a
situation in which the results depend on timing)
Mutual exclusion means “not simultaneous”

— A<BorB<A

— We don’t care which

Forcing mutual exclusion between two critical section

executions is sufficient to ensure correct execution —
guarantees ordering

One way to guarantee mutually exclusive execution is
using locks

13

Critical sections

—» 15 the “happens-before” relation

T1 T2 T1 T2 T1 T2

e I

Possibly icorrect Correct Correct

14

When do critical sections arise?

 One common pattern:
— read-modify-write of
— a shared value (variable)
— In code that can be executed concurrently

« Shared variable:
— Globals and heap-allocated variables
— NOT local variables (which are on the stack)

Example: shared bank account

« Suppose we have to implement a function to
withdraw money from a bank account:

int withdraw (account, amount) {

int balance = get balance (account); // read
balance —-= amount; // modify
put balance (account, balance); // write

spit out cash;

}
* Now suppose that you and your partner share a
bank account with a balance of $100.00

— what happens if you both go to separate ATM machines,
and simultaneously withdraw $10.00 from the account?

« Assume the bank’s application is multi-threaded

 Arandom thread is assigned a transaction when
that transaction is submitted

int withdraw(account, amount) {
int balance = get balance (account);
balance -= amount;
put balance (account, balance);

spit out cash;

int withdraw (account, amount) {

int balance = get balance (account);

balance -= amount;
put balance (account, balance);

spit out cash;

17

Interleaved schedules

* The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

balance = get balance (account);

balance -= amount;
E " context switch
Xecution sequence | 1 balance = get balance (account) ;

as seen by CPU
balance —-= amount;

put balance (account, balance);

spit out cash;

context switch
put balance (account, balance);

spit out cash;

v

 What's the account balance after this sequence?
— who’s happy, the bank or you?

18

Locks

* Alock is a memory object with two operations:
— acquire () : obtain the right to enter the critical section
— release (): give up the right to be in the critical section

 acquire () prevents progress of the thread until
the lock can be acquired

* Note: terminology varies: acquire/release,
lock/unlock

19

Locks: Example

lock ()
O lock ()
O
5
unlock () §
T
O
O
O
unloTk()

20

Java Synchronization Mechanism
« Java has a keyword called synchronized

* |In Java, every object has a lock
— To obtain the lock, you must synchronize with the object

* The simplest way to use synchronization is by
declaring one or more methods to be synchronized

Example 1

public class SavingsAccount

{

private float balance;

A" EEEEEEEEEENEN,

public:synchronized:void withdraw(float anAmount)
{

if ((anAmount>0.0) && (anAmount<=balance))
balance = balance - anAmount;

AN B EEEEEEEENERN,

publicssynchronizedsvoid deposit(float anAmount)

{ \AFEERRERRRRE B

if (anAmount>0.0)
balance = balance + anAmount;

22

Example 2

public class SavingsAccount {
private float balance;

public void withdraw(float anAmount) {
if (anAmount<0.0)

o ® FRGOV s RS ILWQWEHIBWE’ECPPF%OH("Withdraw amount negative");
fsynchronized(this) {

: if (anAmount<=balance)

: balance = balance - anAmount;

’};IIIIIIIIIIIIIIIIIIIIIIIII‘

QEEEEEBR

public void deposit(float anAmount) {
if (anAmount<0.0)
throw new IllegalArgumentExceetion("Deposit amount negative");
S I EEEEEEEEEETR HENE EEEEEER
fsynchronized(this) { ¢

|
m balance = balance + anAmount;
|

‘zllllllllllllllllllllllll’

}

Example Codes

thdexp1.java and thdexpZ2.java
from

https://drive.google.com/open?id=0B6rUEJFM3QiTWUUXxT2EOWHFNOW-<c

24

Design choices for Part 2

« Both sender and receiver are implementable
without multithreading

— Definitely no need for multithreading at the receiver side
— Multithreading may be useful for sender implementation

« Many design choices for the sender are possible

Sketch of one design for Part 2A

/SenderZA \ 4)
[Timer }

Thread

Timer startI lNotify timeout

Data (Re)Sencﬂ
bUﬁer{ Thread J " Receiver 2A

-

Base seqno | | Next seqno

CK Receiv

e
Thread } /
N /

Timer start/stop{A

-

Sketch of one design for Part 2B

/Sender 2B T@mer restart \ 4 N

. /| Timer + ReTx
Timer Queue «— Thread J >

For ReTx Timer start

Data Send W
Thread J Receiver 2B

-

Base segno | | Next segno

\/

ACK marking [ACK Receiv

— 2 e
\ Thread }/
_ S

