Chapter IV: Network Layer

UG3 Computer Communications & Networks
(COMN)

Myungjin Lee
myungjin.lee@ed.ac.uk

Slides copyright of Kurose and Ross

IP addresses: how to get one!
Q: How does a host get IP address?

* hard-coded by system admin in a file
— Windows: control-panel->network->configuration->tcp/ip-
>properties
— UNIX: /etc/rc.config
* DHCP: Dynamic Host Configuration Protocol:
dynamically get address from as server

— “plug-and-play

DHCP: Dynamic Host Configuration Protocol

godal: allow host to dynamically obtain its IP address from network
server when it joins network

— can renew its lease on address in use

— allows reuse of addresses (only hold address while
connected/“on”)

— support for mobile users who want to join network (more
shortly)

DHCP overview:

— host broadcasts “DHCP discover” msg [optional]

— DHCP server responds with “DHCP offer” msg [optional]
— host requests IP address: “DHCP request” msg

— DHCP server sends address: "DHCP ack” msg

28

DHCP client-server scenario

223.1.1.0/24

& arriving DHCP
=_~ client needs
address in this
network

223.1.2.0/24

223.1.3.1 1.3.2

223.1.3.0/24

29

DHCP client-server scenario

DHCP server: 223.1.2.5

DHCP discover

src : 0.0.0.0, 68

dest.: 255.255.255.255,67
yiaddr: 0.0.0.0
transaction ID: 654

arriving
client

=

DHCP offer

src: 223.1.2.5, 67

\ dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4

transaction ID: 654

[~
lifetime: 3600 secs
DHCP request
src: 0.0.0.0, 68
dest:: 255.255.255.255, 67 - —
yiaddrr: 223.1.2.4
— transaction ID: 655
lifetime: 3600 secs
DHCP ACK
| src:223.1.25,67
dest: 255.255.255.255, 68
[

yiaddrr: 223.1.2.4
transaction ID: 655
lifetime: 3600 secs

30

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on
subnet:
— address of first-hop router for client (i.e., default gateway)
— name and |P address of DNS server

— network mask (indicating network versus host portion of
address)

IP addresses: how to get one!

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP s address

space

ISP's block
Organization 0

Organization 1
Organization 2

Organization 7

11001000 00010111 00010000 00000000

11001000 00010111 00010000 00000000

11001000 00010111 00010010 00000000

11001000 00010111 00010100 00000000

200.23.16.0/20

200.23.16.0/23
200.23.18.0/23
200.23.20.0/23

Hierarchical addressing: route aggregation

hierarchical addressing allows efficient advertisement of routing
information:

Organization 0

200.23.16.0/23

\ “Send me anything

Organization 1 _

200.23.18.0/23 \t’)":gi r?:i?\ I;]esses

Organization 2 T)
200.23.20.0/23 . 200.23.16.0/20

Fly-By-Night-ISP \
. . Internet
Organization 7 . /

200.23.30.0/23 -

— ISPs-R-Us “Send me anything
with addresses

/ beginning
199.31.0.0/16”

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization |

Organization 0

200.23.16.0/23 “Sand me anything

with addresses
beginning
200.23.16.0/20”

Fly-By-Night-ISP \

ISPs-R-Us “Send me anything
with addresses
beginning 199.31.0.0/16
or 200.23.18.0/23"

Organization 2

200.23.20.0/23

Internet
Organization 7

200.23.30.0/23

Organization 1

200.23.18.0/23

S\

IP addressing: the last word...

Q: how does an ISP get block of addresses!?

A: ICANN: Internet Corporation for Assigned
Names and Numbers http://www.icann.org/
— allocates addresses
— manages DNS

— assigns domain names, resolves disputes

NAT: network address translation

< rest of

local network >

v

Internet

all datagrams leaving local

network have same single
source NAT IP address:

|38.76.29.7 different source
port numbers

SN
e
13877

(e.g., home network)

10.0.0/24 _» 10.0.0.1
10.0.0.4
™ 10.0.02

=
/ T 10003

datagrams with source or
destination in this network
have 10.0.0/24 address for

source, destination (as usual)

NAT: network address translation

motivation: local network uses just one |IP address as far as
outside world is concerned:

— range of addresses not needed from ISP: just one IP
address for all devices

— can change addresses of devices in local network
without notifying outside world

— can change ISP without changing addresses of devices
in local network

— devices inside local net not explicitly addressable,
visible by outside world (a security plus)

NAT: network address translation

NAT translation table
1: host 10.0.0.1
2: NAT router WAN side addr [LAN side addr nds dataaram to
changes datagram Senas datag
source addr from 138.76.29.7, 5001 | 10.0.0.1, 3345 128.119.40.186, 80
10.0.0.1, 3345 to .

138.76.29.7, 5001,
updates table

S-10.0.0.1, 3345 "
D: 128.119.40.186, 80

—’1\7: 10.0.0.1

; =

_D 10.0.0.2
=

() [T 2T, 5001 !
D: 128.119.40.186, 80

7 ,
138.76.29.7 '8 128.119.40.186, 80_@_
F"s: 128.119.40.186. 80_@_> 1:10.0.0.1, 3345 —
,D: 138.76.29.7, 5001 4+ NAT router —\Q/ 10.0.0.3
3: reply arrives changes datagram h

138.76.29.7, 5001 138.76.29.7, 5001 to 10.0.0.1, 3345

38

NAT: network address translation

* |6-bit port-number field:

— 60,000 simultaneous connections with a single LAN-
side address!

* NAT is controversial:
— routers should only process up to layer 3

— violates end-to-end argument

* NAT possibility must be taken into account by app
designers, e.g., P2P applications

— address shortage should instead be solved by IPvé6

|CMP: internet control message protocol

used by hosts & routers
to communicate network-
level information

— error reporting:
unreachable host, network,
port, protocol

— echo request/reply (used by
ping)

network-layer “above” IP:

— ICMP msgs carried in IP
datagrams

ICMP message: type, code

plus first 8 bytes of IP

datagram causing error

Type Code description

A WWWWWwWwOo

10
11
12

ONO WN-~0O0

OO OO O

echo reply (ping)

dest. network unreachable
dest host unreachable
dest protocol unreachable
dest port unreachable
dest network unknown
dest host unknown

source quench (congestion
control - not used)

echo request (ping)

route advertisement
router discovery

TTL expired

bad IP header

Traceroute and ICMP

* source sends series of * when ICMP messages
UDP segments to dest arrives, source records
— first set has TTL =1 RTTs
— second set has TTL=2, etc. stopping criteria:
— unlikely port number + UDP segment eventually

* when nth set of datagrams arrives at destination host
arrives to nth router: + destination returns ICMP

— router discards datagrams port unreachable
— and sends source ICMP message (type 3, code 3)

messages (type | |, code 0) <+ source stops

— |ICMP messages includes
name of router & IP address

g 3 probes 3 proqes !V :
3 probe

41

IPv6: motivation

* initial motivation: 32-bit address space soon to be
completely allocated

* additional motivation:
— header format helps speed processing/forwarding

— header changes to facilitate QoS

IPv6 datagram format:
— fixed-length 40 byte header

— no fragmentation allowed

42

|IPv6 datagram format

priority: identify priority among datagrams in flow

flow Label: identify datagrams in same “flow.”
(concept of “flow™ not well defined)

next header: identify upper layer protocol for data

flow label

payload len

next hdr

hop limit

source address

(128 bits)

destination address

(128 bits)

data

32 bits

A

v

Other changes from |Pv4

checksum: removed entirely to reduce processing time
at each hop

options: allowed, but outside of header; indicated by
“Next Header” field

ICMPv6: new version of ICMP

— additional message types, e.g. “Packet Too Big”
— multicast group management functions

Transition from IPv4 to IPvé

* not all routers can be upgraded simultaneously

— no “flag days”
— how will network operate with mixed IPv4 and IPv6
routers!?

* tunneling: IPvé datagram carried as payload in |Pv4
datagram among |Pv4 routers

IPv4 header fields IPv6 header fields
IPv4 squrce, dest addr IPv6 source dest addr IPv4 payload
ITITT 1 | \ ‘\ —

A

IPv6 datagram ——

IPv4 datagram >

A

Tunneling

B IPv4 tunnel E F

A
connecting IPv6 routers

IPv6 IPv6 IPv6 IPv6

A B C D E F

IPv6 IPv6 IPv4 IPv4 IPv6 IPv6

46

Tunneling

IPv4 tunnel
A B connecting IPv6 routers E F
IPv6 IPv6 IPv6 IPv6

A B C D E F

IPv6 IPv6 IPv4 IPv4 IPv6 IPv6
—_— —_— ——
flow: X flow: X
src: A src: A
dest: F dest: F
data data
A-to-B: B-to-C: B f C: E-to-F:

IPv6 -to-C: -to-C: IPv6

IPv6 inside IPv6 inside
IPv4 IPv4

Interplay between routing, forwarding

routing alaorithm routing algorithm determines
9219 end-end-path through network
_ forwarding table determines
local forwarding table : .
. local forwarding at this router
dest address |output link

address-range 1 | 3
address-range 2 | 2
address-range 3 | 2
address-range 4 | 1

IP destination address in % %
arriving packet’ :header

48

Graph abstraction

graph: G = (N,E)
N =set of routers={u,v,w, Xx,y, 2z}

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (X,y), (W,y), (W,2), (y,2) }

Graph abstraction: costs

c(x,x”) = cost of link (x,x”)
e.g.,, cw,z)=5

cost could always be |, or
inversely related to bandwidth,
or inversely related to
congestion

cost of path (x4, X5, X3,..., X,) = C(X4,X) + C(Xp,X3) + ... + C(X,4,Xp)

key question: what is the least-cost path between u and z ?
routing algorithm: algorithm that finds that least cost path

50

Q: global or decentralized information?

Routing algorithm classification

global:

all routers have complete
topology, link cost info

“link state” algorithms

decentralized:

router knows physically-
connected neighbors, link costs
to neighbors

iterative process of
computation, exchange of info
with neighbors

1D 77 o
distance vector algorithms

Q: static or dynamic?

static:
* routes change slowly over
time
dynamic:
* routes change more
quickly
— periodic update

— in response to link
cost changes

51

A Link-State Routing Algorithm

Dijkstra ’s algorithm

* net topology, link costs
known to all nodes

— accomplished via “link state
broadcast”

— all nodes have same info

* computes least cost paths
from one node (‘source”)
to all other nodes

— gives forwarding table for
that node
* jterative: after k iterations,
know least cost path to k
dest.” s

notation:

C(X,Y): link cost from node
X toy; = « if not direct
neighbors

D(V): current value of cost
of path from source to dest.
v

P(V): predecessor node
along path from source to v

N': set of nodes whose
least cost path definitively
known

Dijkstra’ s Algorithm

1 Initialization:

2 N'={u}

3 for all nodes v

4 if vadjacenttou

S then D(v) = c(u,v)
6 elseD(v)=<

7

8 Loop
9 find w not in N' such that D(w) is a minimum
10 addwtoN'

12 D(v) = min(D(v), D(w) + c(w,v))

13 /" new cost to v is either old cost to v or known

\/14 shortest path cost to w plus cost from w to v */
15

until all nodes in N’

11 update D(v) for all v adjacent to w and not in N' :

53

Dijkstra’ s algorithm: example

D(v) D(w) D(x) D(y) D(z)
Step N P(v) pw) p(x) ply) p(2)

u 7u Gu 5u oo oo

0

1 uw 6,w @,@11,w oo
2 uwx B,w) 1MW 14,X
3 Uuwxv 10,v) 14,X
4 UWXVY

5 uwxvyz

notes.

» construct shortest path tree by
tracing predecessor nodes

» ties can exist (can be broken
arbitrarily)

Dijkstra’ s algorithm: another example

Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z).p(z)
0 u 2,U 5u 1u o o0
1 ux <« 2,u_ 4x 2 X o0
2 uxy«———2,0 3,y 4y
3 UXYV < 3,y 4,y
4 UXYVW <« 4,y
5 UXYVWZ “

95

Dijkstra’ s algorithm: example (2)

resulting shortest-path tree from u:

B

resulting forwarding table in u:

destination link
Vv (u,v)
x | (ux)
y (u,x)
W (u,x)
Z (u,x)

Dijkstra’ s algorithm, discussion

algorithm complexity: n nodes

e each iteration: need to check all nodes, w, not in N’
* n(n+1)/2 comparisons: O(n?)

* more efficient implementations possible: O(nlogn)

oscillations possible:
* e.g,suppose link cost equals amount of carried traffic:

e given these costs, given these costs, given these costs,
initially find new routing.... find new routing.... find new routing....
NEW & 1EW & NEW 5
resulting in new costs resulting in new costs resulting in new costs

57

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let
d,(y) := cost of least-cost path from x to y
then

d(y) = min {c(x,v) + d,(y) }

cost from neighbor v to destination y

cost to neighbor v

min taken over all neighbors v of x

58

Bellman-Ford example

clearly, d(z) = 5, d,(z) =3, d,(z) =3

B-F equation says:

dy(z) = min { c(u,v) + d,(2)
c(u,x) + d,(2),
c(u,w) +d,(2) }
=min {2 + 5,
1+ 3,
5+3} =4

node achieving minimum is next
hop in shortest path, used in forwarding table

Distance vector algorithm

* D_(y) = estimate of least cost from x to y

— x maintains distance vector D, = [D_(y):y € N]
* node x:
— knows cost to each neighbor v: c(x,v)

. . . . ’ .
— maintains its neighbors distance vectors. For each
neighbor v, x maintains

D,=[D,y):yeN]

60

Distance vector algorithm

key idea:
 from time-to-time, each node sends its own distance
vector estimate to neighbors

* when x receives new DV estimate from neighbor; it
updates its own DV using B-F equation:

D.(y) < min {c(x,v) + D (y)} for each node y € N

+ under minor, natural conditions, the estimate D (y)
converges to the actual least cost d,(y)

61

Distance vector algorithm

iterative, asynchronous:

each local iteration
caused by:

* Jlocal link cost change

DV update message from
neighbor

distributed:

each node notifies
neighbors only when its
DV changes

— neighbors then notify their
neighbors if necessary

each node:

}

wait for (change in local link
cost or msg from neighbor)

|

recompute estimates

if DV to any dest has
changed, notify neighbors

62

node x
table

cost to
Xy Zz

X
y
z

from

node y
table

0 2 7

o0 o0 o0

o0 o0 o0

from
N < X

node z
table

cost to
Xy Zz

from
N <<

o0 o0 o0

cost to

Y Z

S
&

N < X

X
0
2
7

0 1
10

» time

63

D,(y) = min{c(x,y) + Dy(y), c(x,z) + D,(y)}

node X ;ostto
table | x y z
x{(0 2 7
Sy 0O 00 00
Z o0 o0 o0
node y
table
X
5y
yi
node z (ostto
table | X y z
X | ©0 o0 o0
Sy
yi

=min{2+0, 7+1} =2

cost to

from
N < X

» time

64

D,(y) = min{c(x,y) + D,(y), c(x,z) + D,(y)}

node X ;ostto
table | x y z
x{(0 2 7
Sy 0O 00 00
Z o0 o0 o0
node y
table
X
5y
yi
node z (ostto
table | X y z
X | ©0 o0 o0
Sy
yi

=min{2+0, 7+1} =2

cost to

from
N < X

» time

65

D,(y) = min{c(x,y) + Dy(y), c(x,z) + D,(y)}

node X ;ostto
table | x y z
x{(0 2 7
Sy 0O 00 00
Z o0 o0 o0
node y
table
X
5y
yi
node z (ostto
table | X y z
X | ©0 o0 o0
Sy
yi

=min{2+0 , 7+1} =2

cost to

from
N < X

» time

66

node x
table

D,(y) = min{c(x,y) + Dy(y), c(x,z) + D,(y)}
=min{2+0, 7+1} =2

cost to
Xy Zz

D,(z) = min{c(x,y) +
D,(2), c(x,2) + D,(2)}
= min{2+1,7+0} =3

cost to

X
y
z

from

node y
table

0 2 7

from
N < X

o0 o0 o0

o0 o0 o0

from
N < X

node z
table

cost to
Xy Zz

X
y
z

from

o0 o0 o0

» time
67

node x
table

D,(y) = min{c(x,y) + Dy(y), c(x,z) + D,(y)}
=min{2+0, 7+1} =2

cost to
Xy Zz

D,(z) = min{c(x.y) +

D,(z), c(x,z) + D,(2)}
= min{2+1,7+0} =3

cost to

X
y
z

from

node y
table

0 2 7

from
N < X

o0 o0 o0

o0 o0 o0

from
N < X

node z
table

cost to
Xy Zz

X
y
z

from

o0 o0 o0

» time
68

D,(y) = min{c(x,y) + Dy(y), c(x,z) + D,(y)}
=min{2+0, 7+1} =2

D,(z) = min{c(x,y) +
D,(2), ¢(x,2) + D,(2)}
= min{2+1,7+0} =3

node X costto cost to
table | x y z X

x{02 7 x(0 2 3

Sy 0 00 0 §y 2 0 1

node y
table

from
N < X

node z
table

cost to
Xy Zz

X
y
z

from

o0 o0 o0

» time
69

node x
table

D,(y) = min{c(x,y) + Dy(y), c(x,z) + D,(y)}
=min{2+0, 7+1} =2

cost to
Xy Zz

X
y
z

from

node y
table

0 2 7

from
N < X

node z
table

cost to
Xy Zz

from
N <<

o0 o0 o0

cost to

N < X

cost to
Xy Zz

N < X

02 7
20 1

710

cost to

from

D,(z) = min{c(x,y) +
D,(2), c(x,2) + D,(2)}
= min{2+1,7+0} =3

cost to
XYy Z

02 3
2 01
31 0

—\OI\)x<
O -~ W | N

70

Distance vector: link cost changes

link cost changes: 1

+ node detects local link cost change)
<+ updates routing info, recalculates

distance vector 50
+ if DV changes, notify neighbors

“good t,: y detects link-cost change, updates its DV, informs its
news neighbors.
travels

. t,: z receives update from y, updates its table, computes new
fast least cost to x , sends its neighbors its DV.

t,: y receives z' s update, updates its distance table. y’s least costs
do not change, so y does not send a message to z.

71

Distance vector: link cost changes

link cost changes:
+ node detects local link cost change

« bad news travels slow - “count to
infinity problem!

+ 44 iterations before algorithm stabilizes

(Can reach X
with cost of
. 6 (viaZ)

60

"Can reach X
with cost of

8 (via Z))“-

60

S

50

Can reach X
with cost of
4 (via Y))

Can reach X
with cost of

50

—_ 9 (via Y))

72

Distance vector: link cost changes

link cost changes: ‘0
+ node detects local link cost change)
= bad news travels slow - “count to

infinity” problem! 50

+ 44 iterations before algorithm stabilizes

boisoned reverse:

+ If Z routes throughY to get to X:

= ZtellsY its (Z s) distance to X is infinite (soY won’ t route
to X via Z)

<+ will this completely solve count to infinity problem!?

73

Comparison of LS and DV algorithms

message complexity

LS: with n nodes, E links, O(nE)
msgs sent

DV: exchange between neighbors
only

— convergence time varies

speed of convergence

LS: O(n?) algorithm requires
O(nE) msgs

— may have oscillations
DV: convergence time varies

— may be routing loops

— count-to-infinity problem

robustness: what happens if
router malfunctions!?

LS:
— node can advertise incorrect
link cost
— each node computes only its
own table
DV:

— DV node can advertise
incorrect path cost

— each node’ s table used by
others

* error propagate thru
network

74

