Chapter IV: Network Layer

UG3 Computer Communications & Networks (COMN)

Myungjin Lee myungjin.lee@ed.ac.uk

Slides copyright of Kurose and Ross

IP addresses: how to get one?

Q: How does a host get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/"on")
- support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP client-server scenario

DHCP client-server scenario

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client (i.e., default gateway)
- name and IP address of DNS server
- network mask (indicating network versus host portion of address)

IP addresses: how to get one?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	11001000	00010111	<u>0001000</u> 0	00000000	200.23.16.0/23
Organization 1	11001000	00010111	00010010	00000000	200.23.18.0/23
Organization 2	<u>11001000</u>	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
Organization 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

hierarchical addressing allows efficient advertisement of routing information:

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization I

IP addressing: the last word...

- Q: how does an ISP get block of addresses?
- A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable,
 visible by outside world (a security plus)

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LANside address!
- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting:
 unreachable host, network,
 port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes
 name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of "flow" not well defined) next header: identify upper layer protocol for data

ver	pri	flow label				
	payload	l len	next hdr	hop limit		
	source address (128 bits)					
destination address (128 bits)						
data						

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

Interplay between routing, forwarding

routing algorithm determines end-end-path through network

forwarding table determines local forwarding at this router

Graph abstraction

graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Graph abstraction: costs

$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information? global:

- all routers have complete topology, link cost info
- "link state" algorithms

decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

static:

 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- C(X,y): link cost from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to dest.
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijkstra's Algorithm

```
Initialization:
   N' = \{u\}
   for all nodes v
    if v adjacent to u
       then D(v) = c(u,v)
    else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
   add w to N'
   update D(v) for all v adjacent to w and not in N':
      D(v) = \min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

		$D(\mathbf{v})$	D(w)	D(x)	D(y)	D(z)
Step	o N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	3,u	5,u	∞	∞
1	uw	6,w		5,u) 11,W	∞
2	uwx	6,w	l		11,W	14,x
3	uwxv				10,V	14,x
4	uwxvy					(12,y)
5	uwxvyz				<u> </u>	

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

Ste	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux ←	2,u	4,x		2,x	∞
	2	uxy <mark>←</mark>	2, u	3,y			4,y
	3	uxyv 🕌		3,y			4,y
	4	uxyvw 🗲					4,y
_	5	uxvvwz •					

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:

resulting forwarding table in u:

destination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x)

Dijkstra's algorithm, discussion

algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N'
- n(n+1)/2 comparisons: $O(n^2)$
- more efficient implementations possible: O(nlogn)

oscillations possible:

• e.g., suppose link cost equals amount of carried traffic:

given these costs, find new routing.... resulting in new costs

given these costs, find new routing....

given these costs, find new routing.... resulting in new costs resulting in new costs

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let $d_{y}(y) := cost of least-cost path from x to y$ then $d_{v}(y) = \min_{v \in V} \{c(x,v) + d_{v}(y)\}$ cost from neighbor v to destination y cost to neighbor v min taken over all neighbors v of x

Bellman-Ford example

clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

node achieving minimum is next hop in shortest path, used in forwarding table

Distance vector algorithm

- $D_x(y)$ = estimate of least cost from x to y
 - x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbb{N}]$
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains

$$\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$$

Distance vector algorithm

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow min_v\{c(x,v) + D_v(y)\}\$$
 for each node $y \in N$

* under minor, natural conditions, the estimate $D_x(y)$ converges to the actual least cost $d_x(y)$

Distance vector algorithm

iterative, asynchronous: each local iteration

each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

each node:

wait for (change in local link cost or msg from neighbor) *recompute* estimates if DV to any dest has changed, *notify* neighbors

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = $\min\{2+1, 7+0\} = 3$

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast" t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from y, updates its table, computes new least cost to x, sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do not change, so y does not send a message to z.

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- * bad news travels slow "count to infinity" problem!

poisoned reverse:

- If Z routes through Y to get to X:
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- LS: O(n²) algorithm requires
 O(nE) msgs
 - may have oscillations
- **DV:** convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect
 link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network