Chapter lll: Transport Layer

UG3 Computer Communications & Networks
(COMN)

Myungjin Lee
myungjin.lee@ed.ac.uk

Slides copyright of Kurose and Ross

TCP: Overview RFCs:793,1122,1323,2018, 2581

point-to-point: full duplex data:

— one sender, one receiver — bi-directional data flow in
same connection

— MSS: maximum segment
size

reliable, in-order byte
steam:

— no “message boundaries” . .
e connection-oriented:

— handshaking (exchange of
control msgs) inits sender,
receiver state before data
exchange

pipelined:
— TCP congestion and flow
control set window size

flow controlled:

— sender will not overwhelm
receiver

68

TCP segment structure

< 32 bits >

URG: urgent data
(generally not used)™_ source port# | dest port #

ACK: ACK # . Sequence number
valid \kﬂgwledgement number

head|n

T UAPRISIF| receive window
| >

PSH: push data now /%yﬁd— ’I—L

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

Urg data pointer

RST, SYN, FIN—| op/a{ variable length)
connection estab

(setup, teardown
commands) o
application

Internet / data
(variable length)

checksum
(as in UDP)

TCP seq. numbers, ACKs

outgoing segment from sender

source port # dest port #
sequence humbers: sequence number
i “ ’ acknowledgement number
—byte stream "number " of rwnd
. . checksum urg pointer
first byte in segment’ s data
window size
acknowledgements: N
from other side sender sequence number space
—cumulative ACK sent sent, not- usable not
) ACKed yet ACKed but not usable
Q: how receiver handles out-]gl“inh—) yet sent
ight”
of-order segments incoming segment to sender
. ’ source port # dest port #
—A: TCP spec doesn t say, - v ——
up to implementor Il acknowledgement number
A rwnd

checksum urg pointer

70

Byte stream in TCP

100th byte

Cannot be transmitted now

lllllllllllllllll

lllllllllllllllll

M bytes —4

~—— Window: N bytes —|

TCP header

v

(seq no. = 100)

HTTP Get Messag

71

TCP seq. numbers, ACKs

Host A Host B

User
es
tygc, —~—
Seq=42, ACK=79, data = ‘C

Seq=79, ACK=43, data = ‘C’

host ACKs /

receipt
of echoed —___
‘C Seq=43, ACK=K

simple telnet scenario

host ACKs
receipt of

‘C’, echoes
back ‘C’

72

TCP round trip time, timeout

O: how to set TCP O: how to estimate RTT?

timeout value? * SampleRTT: measured

time from segment
longer than RTT transmission until ACK

— but RTT varies receipt

* 100 short: premature — ignore retransmissions
timeout, unnecessary

. * SampleRTT will vary, want
retransmissions

estimated RTT “smoother”

* too long: slow reaction — average several recent

to segment loss measurements, not just
current SampleRTT

TCP round trip time, timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

+» exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr ,

i T N\Am

& sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds)

TCP round trip time, timeout

* timeout interval: EstimatedRTT plus “safety margin”
— large variation in EstimatedRTT -> larger safety margin

* estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

TCP reliable data transfer

e TCP creates rdt service on
top of IP’ s unreliable service

— pipelined segments

— cumulative acks let’ s initially consider
— single retransmission timer simplified TCP sender:
* retransmissions triggered by: — ignore duplicate acks

— ignore flow control,

— timeout events ,
congestion control

— duplicate acks

TCP sender events:

data rcvd from app: timeout:
* create segment with seq# * retransmit segment that
* seq# is byte-stream caused timeout
number of first data byte ¢ restart timer
In segment ack rcvd:
* start timer if not already « jf ack acknowledges
running previously unacked
— think of timer as for oldest segments
una.ckeFI segment — update what is known to
— expiration interval: be ACKed
TimeOutlInterval

— start timer if there are still
unacked segments

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)

A T start timer
NextSegNum = InitialSeqNum

SendBase = InitialSeqNum

timeout

retransmit not-yet-acked segment
with smallest seq. #

start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

TCP: retransmission scenarios

Host A Host B Host A

0S Host B
fV{ \u m \u
~— SendBase=92 ~—
Seq=92, 8 bytes of data ‘ Seq=92, 8 bytes of data
5 _— 5 Seq=100, 20 bytes of dat
5 ACK=100 5
E) <l =
ACK=100
ACK=120
\ !
Seq=92, 8 bytes of data s 00 Seq=92, 8
endBase=
/ bytes of data—_
SendBase=120

\

ACK=100

ACK=120
/ SendBase=120 /

lost ACK scenario premature timeout

TCP: retransmission scenarios

Host A Host B
é V{ \u

Seq=92, 8 bytes of data

—~— —

Seq=100, 20 bytes%fdz

ACK=100
X<
ACK=120

—

e——— timeout

Seq=120, 15 bytes of data

\.L

cumulative ACK

80

=

=
=

TCP ACK generation [RFC 5861]

event at receiver

TCP receiver action

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

immediately send single cumulative
ACK, ACKing both in-order segments

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

immediately send duplicate ACK,
indicating seq. # of next expected byte

arrival of segment that
partially or completely fills gap

immediate send ACK, provided that
segment starts at lower end of gap

81

TCP fast retransmit

* time-out period often
relatively long:

— long delay before resending
lost packet

* detect lost segments via
duplicate ACKs

— sender often sends many
segments back-to-back

— if segment is lost, there will

likely be many duplicate
ACKs

— TCP fast retransmit ——

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don’ t
wait for timeout

82

TCP fast retransmit

f 3

— Seq=92, 8 bytes of data

\seq=100w
\X

ACK=100

: ACK=
3 DUP ACKS{ oy

ACK=100
e

TSeq=100, 20 bytes of data

I
‘O
(7)]
>
L
o
n
—
o

timeout

A A

v v

fast retransmit after sender
receipt of triple duplicate ACK

— flow control

too much, too fast

TCP flow control

application may

remove data from
TCP socket buffers

applicatior
Drocess

application

... Slower than TCP
receiver is delivering —
(sender is sending)

receiver controls sender, so
sender won’ t overflow
receiver’ s buffer by transmitting

o

TCP socket
receiver buffers

TCP
code

IP
code

e

1
I
from sender|

"

receiver protocol stack

84

TCP flow control

e receiver “advertises’ free buffer

space by including rwnd value in to application process
TCP header of receiver-to-sender T !_I_\
segments RcvBuffer buffered data
— RevBuffer size set via socket T
options (typical default is 4096 bytes) rwnd free buffer space
— many operating systems autoadjust _i_v_
RcvBuffer '
« sender limits amount of unacked TCP segment payloaas

(“in-flight”) data to receiver’ s

rwnd value receiver-side buffering

* guarantees receive buffer will not
overflow

Connection Management

before exchanging data, sender/receiver “handshake”:

* agree to establish connection (each knowing the other willing to

establish connection)

®* agree on connection parameters

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

Z V{ network
e i

@y

Socket clientSocket =

newSocket ("hostname", "port

number") ;

application

[T 1 1
[al_ln |
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

network

Socket connectionSocket =
welcomeSocket.accept() ;

86

TCP 3-way handshake

client state

g B

CLOSED i

choose init seq num, x
send TCP SYN msg

SYNSENT

v received SYNACK(x)
ESTAB indicates server is live;
> send ACK for SYNACK;
this segment may contain
client-to-server data

\

SYNbit=1, Seq=x

_—

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

_—
T~

ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK

msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

v

ESTAB

87

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;
A .
Socket clientSocket =
SYN(X) v newSocket ("hostname", "port
mb " ;
SYNACK(seq=y,ACKnum=x+1) number™)
create new socket for SYN(seg=x)
communication back to client
1 ‘,
‘ ‘ SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

TCP: closing a connection

e client, server each close their side of connection
— send TCP segment with FIN bit = |

* respond to received FIN with ACK

— on receiving FIN,ACK can be combined with own FIN

* simultaneous FIN exchanges can be handled

TCP: closing a connection

client state

g B
ESTAB e

clientSocket.close ()

FIN_WAIT _1 can no longer

send but can
l receive data

FIN WAIT 2 wait for server
n B close

TIMED_WAIT —.

timed wait
for 2*max
segment lifetime

CLOSED _‘,

T FiNbit=1
it=1, SEK
. /
ACKbit=1; ACKnum=x+1
—

. /
‘)Nblt=l, seq=y
\

ACKbit=1; ACKnum=y+1
\

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

90

Principles of congestion control

congestion:

* informally: “too many sources sending too much data
too fast for network to handle”

* different from flow control!

* manifestations:
— lost packets (buffer overflow at routers)
— long delays (queueing in router buffers)

* atop-10 problem!

Causes/costs of congestion: scenario |

original data: 7‘“in

two senders, two
receivers

one router, infinite
buffers

output link capacity: R

NO retransmission HostB

R/2-ommcmeemmee

}*out

Yo

>

throughput: 7*out

A

A

unlimited shared

output link buffers

Ain R/2

maximum per-connection

throughput: R/2

delay

Ain R/2

y

large delays as arrival rate, A, ,
approaches capacity

Causes/costs of congestion: scenario 2

* one router, finite buffers

* sender retransmission of timed-out packet
— application-layer input = application-layer output: A;, = A
— transport-layer input includes retransmissions : \';, =\,

| @<J—A,,: original data

A'.: original data, plus
retransmitted data

” HostlA L = H

DS v

S=—— SERREENR
IR

A——

out

finite shared output
link buffers
93

Causes/costs of congestion: scenario 2

R/2 4 -mmmmmmmmee
idealization: perfect knowledge

* sender sends only when router <
buffers available

out

| E@-—)\, : original data

A'.: original data, plus
retransmitted data

copy,

out

[A free buffer space! E
>

SSs=== “HRNIERR

finite shared output
link buffers

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost, dropped
at router due to full buffers

* sender only resends if packet
known to be lost

A, : original data

- oY
copy A" original data, plus out
retransmitted data
n b

no buffer space!
>

SSS=== “HINIERR

Causes/costs of congestion: scenario 2

7

Idealization: known loss
packets can be lost, dropped
at router due to full buffers =

when sending at R/2,
some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

out

* sender only resends if packet , .
known to be lost A R/2

| @<«J—A,,: original data

A ‘_
A" original data, plus Ao
retransmitted data
free buffer space! E

~HENERNR

96

Causes/costs of congestion: scenario 2

Realistic: duplicates .
<« packets can be lost, dropped
at router due to full buffers _ T When Zzgig‘tg ARz,
+ sender times out prematurely, < . retransmissions
. . ! including duplicated
Sendmg two COpIES, both of i that are delivered!
which are delivered % R/
;0,:@ in
E \
— in ,
] A _}L
A n out
free buffer space! , E

S v

SSS=== “HINIERR

97

Causes/costs of congestion: scenario 2

Realistic: duplicates
R/2}--memmmemmmem e

<« packets can be lost, dropped e

at router due to full buffers _ T When sz;i':tg ARz,
+ sender times out prematurely, < . retransmissions

. . ! including duplicated
Sendmg two COpIES, both of ! that are delivered!
which are delivered =

“costs’ of congestion:

» more work (retrans) for given “goodput”

+ unneeded retransmissions: link carries multiple copies of pkt
" decreasing goodput

98

Causes/costs of congestion: scenario 3

e four senders Q: what happens as A, and A

increase !
* multihop paths A:asred A increases,all arriving
* timeout/retransmit blue pkts at upper queue are

dropped, blue throughput = 0

Host A

A, : original data Aout Host B

A'.: original data, plus
retransmitted data

finite shared output
link buffers

Host D

e

N

thy

99

Causes/costs of congestion: scenario 3

Bandwidth wastage
for packets dropped at [i
the 2nd router f

R/2

}"out

Throughput by blue traffic

) |
7“in R/2
Offered load by Host A

13 7 o
another cost of congestion:

» when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

100

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion

control:

no explicit feedback
from network

congestion inferred
from end-system
observed loss, delay

approach taken by TCP

network-assisted
congestion control:

* routers provide feedback
to end systems
—single bit indicating
congestion (SNA,
DECDbit, TCP/IP ECN,
ATM)

—explicit rate for sender
to send at

101

TCP congestion control:
additive increase multiplicative decrease (AIMD)

% approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

= multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
o ... until loss occurs (then cut window in half)
AIMD saw tooth 8 3
behavior: probing #5 V-

for bandwidth € &

e D

ve

5 8

>

time
102

TCP Congestion Control: details

sender sequence number space
—— cwnd — TCP sending rate:

||||||||| ||||||||||||||\ + roughiy: send cwnd
bytes, wait RTT for

\ ACKS, then send more

last byte Iast byte

yet ACKed bytes

(“in-
flight™)

* sender limits transmission:

LastByteSent- _ ,ung rate bytes/sec

LastByteAcked

R

* cwnd is dynamic, function
of perceived network
congestion

103

TCP Slow Start

Host A Host B
h ion besi /™ 3
[]
when connection begins, =
increase rate
o . . T One Se ment
exponentially until first -
'
|

loss event:

— initially cwnd = | MSS w

— double cwnd every RTT

— done by incrementing /
cwnd for every ACK our segments
received

* summary: initial rate is
slow but ramps up

exponentially fast time

104

TCP: detecting, reacting to loss

* |oss indicated by timeout:
— cwnd set to | MSS;

— window then grows exponentially (as in slow start) to
threshold, then grows linearly

* loss indicated by 3 duplicate ACKs: TCP RENO

— dup ACKSs indicate network capable of delivering some
segments

— cwnd is cut in half window then grows linearly

* TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

TCP: switching from slow start to CA

Q: when should the
exponential
increase switch to
linear?

T

TCP Reno

N
|

ssthresh

A:when cwnd gets
to |/2 of its value
before timeout.

ssthresh

Congestion window
(in segments)

TCP Tahoe

O N M O © O
1 1 | 1

| | | | | | | | | | | | | | |
. 5 6 7 8 9 10 11 12 13 14 15
Implementation: Transmission round

 variable ssthresh

o
N
w
SN

* on loss event, ssthresh is
set to 1/2 of cwnd just
before loss event

106

Summary: TCP Congestion Control

duplicate ACK __new ACk IE |E I‘

cwnd = cwnd + MSS_+(MSS/cwnd)

dupACKcount++ new ACK dupACKcount =0
cwnd = cwnd+MSS transmit new segment(s), as allowed

dupACKcount=0
transmit new segment(s), as allowed

)

A

cwnd =1 MSS
ssthresh = 64 KB

cwnd > ssthresh

_dupACKcount =0__ A -
- (Pf;(\\ timeout
: S ¢ _))‘esh = cwnd/2 _
;OQQ\ </ owid = 1 MSS duplicate ACK
2 timeout dupACKcount = 0 dupACKcount++
< oSh = ownd2 A retransmit missing segment A
cwnd = 1 MSS
dupACKcount=0 FQ"\Q\
retransmit missing segment ((c sz)
timeout “\>
ssthresh = cwnd/2
cwnd = 1 New ACK
dupACKcount =0 “wnd = ssthresh
dupACKcount == 3 retransmit missing segment dg\gRCRCSOSU ntre=30 dupACKcount == 3
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

107

TCP throughput

* avg. TCP throuput as function of window size, RTT?

— ignore slow start, assume always data to send

* W:window Ssize (measured in bytes) Where loss occurs
— avg. window size (# in-flight bytes) is ¥4 W
— avg. throuput is 3/4W per RTT

avg TCP throuput = W

RTT bytes/sec

Hlw

W

{

W/2

3/4W

108

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/K

TCP connection 1

bottleneck
router
capacity R

TCP connectign 2

109

Why is TCP fair?

two competing sessions:

* additive increase gives slope of |, as throughout increases

* multiplicative decrease decreases throughput proportionally

Full bandwidth
utilization line

Connection 2 throughput

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

(X4, Yq) where X;+Y, =R

Connection 1 throughput R

110

Fairness (more)

Fairness and UDP

* multimedia apps often
do not use TCP

— do not want rate
throttled by congestion
control

e instead use UDP:

— send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP

connections

application can open
multiple parallel
connections between
two hosts

web browsers do this

e.g., link of rate R with
9 existing connections:

— new app asks for | TCP, gets
rate R/10

— new app asks for |1 TCPs,
gets R/2

