
Chapter II: Application Layer

UG3 Computer Communications & Networks
(COMN)

Myungjin Lee
myungjin.lee@ed.ac.uk

Slides copyright of Kurose and Ross

Internet hourglass

Here

2

Some network apps

• e-mail
• web
• text messaging
• remote login
• P2P file sharing
• multi-user network games
• streaming stored video

(YouTube, Hulu, Netflix)

• voice over IP (e.g., Skype)
• real-time video

conferencing
• social networking
• search
• …
• …

3

Creating a network app

write programs that:
• run on (different) end systems
• communicate over network
• e.g., web server software

communicates with browser software

no need to write software for network-
core devices

• network-core devices do not run user
applications

• applications on end systems allows for
rapid app development, propagation

4

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application architectures

possible structure of applications:
• client-server
• peer-to-peer (P2P)

5

Client-server architecture

6

server:
• always-on host
• permanent IP address
• data centers for scaling

clients:
• communicate with server
• may be intermittently

connected
• may have dynamic IP addresses
• do not communicate directly

with each other

client/server

P2P architecture

• no always-on server
• arbitrary end systems directly

communicate
• peers request service from other

peers, provide service in return to
other peers
– self scalability – new peers bring

new service capacity, as well as
new service demands

• peers are intermittently connected
and change IP addresses
– complex management

7

peer-peer

Processes communicating

8

process: program running
within a host

• within same host, two
processes communicate
using inter-process
communication (defined by
OS)

• processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

v aside: applications with P2P
architectures have client
processes & server
processes

clients, servers

Sockets

• process sends/receives messages to/from its socket
• socket analogous to door

– sending process shoves message out door
– sending process relies on transport infrastructure on other

side of door to deliver message to socket at receiving process

14

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Addressing processes

10

• to receive messages,
process must have identifier

• host device has unique 32-
bit IP address

• Q: does IP address of host
on which process runs
suffice for identifying the
process?

• identifier includes both IP
address and port numbers
associated with process on
host.

• example port numbers:
– HTTP server: 80
– mail server: 25

• to send HTTP message to
www.inf.ed.ac.uk web
server:
– IP address: 129.215.33.176
– port number: 80

• more shortly…

§ A: no, many processes
can be running on same
host

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-
transport protocol

11

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Socket programming

Two socket types for two transport services:
– UDP: unreliable datagram
– TCP: reliable, byte stream-oriented

12

Application Example:
1. Client reads a line of characters (data) from its

keyboard and sends the data to the server.
2. The server receives the data and converts

characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays

the line on its screen.

Socket programming with UDP

UDP: no “connection” between client & server
• no handshaking before sending data
• sender explicitly attaches IP destination address and port # to

each packet
• rcvr extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-
order

Application viewpoint:
• UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

13

Client/server socket interaction: UDP

14

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET,

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))
modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)
print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server
get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Example app: UDP client

15

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket
bind socket to local port
number 12000

loop forever
Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Example app: UDP server

16

Socket programming with TCP

17

• when contacted by client, server
TCP creates new socket for server
process to communicate with
that particular client
– allows server to talk with

multiple clients
– source port numbers used to

distinguish clients (more in
Chap 3)

client must contact server
• server process must first be

running
• server must have created

socket (door) that
welcomes client’s contact

client contacts server by:
• Creating TCP socket,

specifying IP address, port
number of server process

• when client creates socket:
client TCP establishes
connection to server TCP

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Illustration of TCP socket in client/server

18

Client/server socket interaction: TCP

19

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Example app: TCP client

20

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Example app: TCP server

21

App-layer protocol defines

• types of messages exchanged,
– e.g., request, response

• message syntax:
– what fields in messages &

how fields are delineated
• message semantics

– meaning of information in
fields

• rules for when and how
processes send & respond to
messages

open protocols:
• defined in RFCs
• allows for interoperability
• e.g., HTTP, SMTP
proprietary protocols:
• e.g., Skype

22

What transport service does an app need?

23

timing
• some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

data integrity
• some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

• other apps (e.g., audio) can
tolerate some loss

throughput
v some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

v other apps (“elastic apps”)
make use of whatever
throughput they get

security
v encryption, data integrity,

…

Transport service requirements: common apps

24

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s
msec

yes, few secs
yes, 100’s
msec
yes and no

Internet transport protocols services

TCP service:
• reliable transport between

sending and receiving
process

• flow control: sender won’t
overwhelm receiver

• congestion control: throttle
sender when network
overloaded

• does not provide: timing,
minimum throughput
guarantee, security

• connection-oriented: setup
required between client and
server processes

UDP service:
• unreliable data transfer

between sending and
receiving process

• does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup,

Q: why bother? Why is there a
UDP?

25

Internet apps: application, transport protocols

26

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

