Examinable Topics

UG3 Computer Communications & Networks (COMN)

Myungjin Lee myungjin.lee@ed.ac.uk

- What is SDN?
- The working mechanism of OpenFlow

- Policy on matching flow entry in OpenFlow
 - Exact match has the highest priority
 - All wildcard entries have a priority associated with them
 - Higher priority entries match before lower priority ones

	Src IP	Src Port	Dst IP	Dst Port	Protocol
Flow:	1.2.3.4	10000	5.6.7.8	22	TCP

	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Priority	Action
Entry 1:	*	5.6.7.8	*	*	*	1	port6
Entry 2:	*	*	*	*	22	10	drop

- Example: identifying path of a flow
 - A flow is defined as <srcIP, srcPort, dstIP, dstPort, proto>
 - How many paths exist from Src to Dst?
 - Assumption: Forwarding rules are written as wildcards

- Q: How to determine the path taken by packets of a flow?
- A: Do reverse search

- Step 1: The controller writes a rule at switch H
 - Forward packets of the red flow to the controller (Rule1) while giving the rule higher priority than forwarding rules'
 - It would know that the packets pass switch H
- Step 2: The controller removes Rule 1

- Step 3: The controller writes a rule at switches D & G
 - Forward packets of the red flow to the controller (Rule1) while giving the rule higher priority than forwarding rules'
 - It would know that the packets pass switch D
- Step 4: The controller removes Rule 1

- Step 5: The controller writes a rule at switches C & F
 - Forward packets of the red flow to the controller (Rule1) while giving the rule higher priority than forwarding rules'
 - It would know that the packets pass switch F
- Step 6: The controller removes Rule 1

Introduction

- Understanding of basic concepts and terminologies
 - Bandwidth (or Capacity)
 - Throughput
 - Delay
 - Loss
 - BDP (Bandwidth-delay product)
 - Layering
 - Encapsulation
 - and so forth

Introduction

- Characteristics of packet-switching
 - statistical multiplexing
 - store-and-forward
 - queuing delay and loss
- Packet switching vs circuit switching
 - Pros and cons of each switching method

Packet switching versus circuit switching

packet switching allows more users to use network!

example:

- I Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

- 10 users
- packet switching:
 - with 35 users, probability > 10 active at same time is less than .0004 *

Q: what happens if > 35 users ?

* Check out the online interactive exercises for more examples

Binomial Probability Distribution

- A fixed number of observations (trials), n
 - e.g., 20 tosses of a coin
- Binary random variable
 - e.g., Head or tail in coin toss
 - Often called as success or failure
 - Prob of success is p, and prob of failure is 1-p
- Constant probability for each observation

Binomial example

- Take the example of 5 coin tosses
- What's the probability that you flip exactly 3 heads in 5 coin tosses?

Binomial distribution

- Solution:
- One way to get exactly 3 heads: HHHTT
- What's the probability of this exact arrangement?
 P(heads) x P(heads) x P(heads) x P(tails) x P(tails) x P(tails)
 = (1/2)³ x (1/2)²
- Another way to get exactly 3 heads: THHHT
 - Probability of this exact outcome = $(1/2) \times (1/2)^3 \times (1/2)$ = $(1/2)^3 \times (1/2)^2$

Binomial distribution

- In fact, (1/2)³ x (1/2)² is the probability of each unique outcome that has exactly 3 heads and 2 tails
- So, the overall probability of 3 heads and 2 tails is: $(1/2)^3 \times (1/2)^2 + (1/2)^3 \times (1/2)^2 + (1/2)^3 \times (1/2)^2 + \dots$ for as many unique arrangements as there are
- But how many are there??

The probability of each unique outcome (note: they are all equal)

$$\therefore P(3 \text{ heads and } 2 \text{ tails}) = \binom{5}{3} \times P(\text{heads})^3 \times P(\text{tails})^2$$

 $= 10 \times (\frac{1}{2})^{5=}31.25\%$

Binomial distribution, generally

Note the general pattern emerging \rightarrow if you have only two possible outcomes (call them 1/0 or yes/no or success/failure) in *n* independent trials, then the probability of exactly *X* "successes"=

Packet switching versus circuit switching

packet switching allows more users to use network!

example:

- I Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

- 10 users
- packet switching:
 - with 35 users, probability > 10 active at same time is less than .0004 *

Q: what happens if > 35 users ?

- N = 35 users
- Prob (# active users > 10) = 1 Prob (#active = 10) - Prob (#active = 9)

$$-$$
 Prob (#active = 8)

$$-$$
 Prob (#active = 0)

• Prob (#active = 10) = C(35, 10) * $0.1^{10} \times 0.9^{25}$

Application layer

- Client-server vs P2P
- Transport service requirements depending on applications
- TCP service vs UDP service
- Web and HTTP
 - non-persistent vs persistent HTTP
 - Response times
 - HTTP Cookie
 - Web caching

Application layer

• DNS

- The working mechanism of DNS

- P2P
 - File distribution efficiency: client-server vs P2P
 - BitTorrent working mechanism

Transport layer

- Demultiplexing
 - Connectionless
 - Connection-oriented
- Reliable transport protocols
 - Stop-and-wait, Go-back-N, Selective Repeat
- TCP
 - slow start
 - fast retransmit
 - connection establishment
 - congestion control: AIMD
 - flow control
 - fairness

Network layer

- Longest Prefix Matching
- Router architecture
- Subnet: concepts
- Hierarchical addressing
- Understanding of DHCP, NAT, ICMP and IPv6

Network layer

- Routing algorithm
 - Link State algorithm: Dijkstra's algorithm
 - Distance Vector algorithm: Bellman-Ford algorithm
- Hierarchical routing
- Understanding of RIP, OSPF and BGP

Link layer

- Multiple access protocols
 - channel partitioning (TDMA, FDMA)
 - random access (Slotted ALOHA, Pure ALOHA, CSMA, CSMA/CD)
 - "taking turns" (polling, token passing)
- MAC address and ARP
- Ethernet
 - Switch self-learning mechanism
- Switch vs. Router
- Error detection (e.g., CRC)

Multimedia networking

- Streaming stored video
- Streaming live video
- Content-Distribution Network
- Protocols for real-time interactive applications
 - RTP
 - SIP
 - H.323
- Network support for multimedia applications
 - DiffServ and IntServ