
A Concurrency WorkoutJoachim ParrowDep. TeleinformaticsKTH, Stockholm, SwedenOctober 31, 19961 IntroductionThe goal of this workout is to make you familiar with a basic language forformulating concurrent processes and its use in formal analysis through anautomated tool, the Concurrency Workbench (CWB). The intention is thatyou should read it while running the CWB and do all examples, exercisesand hand-ins in as they come. It will probably take you the better part of aday.1.1 Prerequisites� You need to have read chapters 1 and 2.1{2.7 in Milner, Communicationand Concurrency (Prentice Hall, 1989), or equivalent material, and un-derstood it to an extent that the terms \agent", \action", \transition"etc. are familiar.� You need to have access to and brie
y looked through the manual forthe CWB (version 7.0), sections 1-7 and 9, so you know roughly whatis in it. You may safely skip everything related to TCCS, SCCS, anddivergence. Keep the manual at hand and consult it at need.� You need to use a machine where CWB version 7.0 is available, andknow how to start it. You also need to use a text editor. (No program-ming is required.) 1

1.2 GradingIt is strongly recommended that you do all the exercises. The parts labelled\hand-in" (marked !) serve as checkpoints for grading by teaching assis-tants. When you solve these keep the following in mind:� You may complete the hand-ins in groups of two persons, or indi-vidually, as you wish. No collaboration between groups is allowed.� The deadline and the possible credits you get for completing the hand-ins in time are de�ned in the course PM. The deadline is strict. Ifyou submit your solution too late, the TAs (depending on their work-load) may still grade it and thus give you valuable feedback, but youwill receive no credits.� Your solutions should be hand-written. The reason for this is partlyto reduce the incentive to collaborate in larger groups, and partly toavoid too long and irrelevant computer listings. Submit no printoutsfrom the CWB.� You must explain how you have used the CWB to solve the hand-ins: where appropriate, you should write down the agents under consid-eration, the CWB commands you apply them do, and brief descriptionsand interpretations of the results. This holds even if you feel that ahand-in is simple enough to solve in your head. The point of the hand-ins is to test how well you have mastered the CWB.� Solutions with unclear diagrams or illegible writing will get a signi�-cantly reduced score.

2

2 Getting Started2.1 First StepsActivate the workbench. You are greeted by a messageEdinburgh Concurrency Workbench, version 7.0,Fri Oct 6 11:36:58 BST 1995Command:The �rst two lines tell you which version of the Workbench you have. Thethird line is the CWB command prompt and means that the CWB expectsyou to type in a command. Let us try the simplest command there is, sotypequitwhich according to the manual terminates execution of the workbench. Unless quityou read the manual closely you are in for a disappointment. Just typingquit (followed by Return) apparently accomplishes nothing! Could it bethat the system has crashed? An experienced Unix user will now try to typecontrol-c, in the hope of aborting the program. Try this! What happens? control-cIn the CWB a control-c always returns you to the command prompt. Inorder to exit from the CWB you need to type the quit command properly,i.e., end it with a semicolon:quit;Remember that all commands must be terminated by semicolon before theCWB acts on them! Now make sure that you can exit and restart the Work-bench!There is a rudimentary on-line help available through the command help. helpTryhelp;help commands;help quit; 3

As you see these are not really useful to teach you what you don't know, butthey might serve to refresh your memory.If you (like me) forgot the semicolon again this is a good time to �ndout that commands may extend over several lines! Typing help quit; isequivalent to typinghelpquit;A new line in a command just counts as a blank space. So semicolons arenecessary to tell the Workbench when you are �nished typing the command.2.2 Agent Environments identi�ersYou can type in de�nitions of agents and bind them to agent identi�ers, some-times also called variables (while in Milner they are called agent Constants).This is accomplished with the agent command. An example: agentCommand: agent A = a.0;You have now bound the agent identi�er A to the agent a.0; an agent thatperforms an a action and then does nothing more. Agent identi�ers mustbegin with an upper case letter (try to violate this by typing agent a = a.0;and check out the error message!) while actions must begin with a lower caseletter. Agents identi�ers and actions may consist of several characters; themanual will tell you exactly which ones though letters and numerals probablysu�ce for your purposes now. The agent 0 in Milner is written as 0 (zero).The bindings of identi�ers to agents is stored in what is called the agent environmentenvironment. To see this try the command pe; which will print it. peCommand: pe;** Agents **agent A = a.0It is permissible to rebind an identi�er which is already bound. Theold binding is then discarded and replaced by the new one. Try agent A4

= a.a.0; and enjoy the perhaps cryptic warning you get that A is alreadybound, and then check the environment with pe;.Exercise 1 What warning do you get?The command clear; removes all bindings in the environment. You clearwon't really need the binding above again, so why not clear it out now?Exercise 2 Why do you think that the agent identi�ers are sometimes re-ferred to as \variables" in the CWB, whereas they are called \constants" inMilner?If you think that this kind of exercise is unfair, there is a solution inSection 6 below. Most exercises in this workout are solved by using theWorkbench. For those who are not you have answers in that section.2.3 SyntaxUsing the agent command you can explore the correct syntax for writingagents in the CWB. This is fully de�ned in the manual and is recapitulatedwith the help syntax; command. But you will only need a subset of it.Agents are built from actions, which are character strings beginning with actionsa lower case letter. The co-actions (overlined in Milner) are written by start-ing with a single quote (') since overlining is hard to do on a standardkeyboard. Thus what in Milner is written a is in the CWB written 'a. Andsince Greek letters are lacking, the internal action � in Milner is written tauin the CWB1.The operators for sum (+), parallel (|), restriction (n) and relabelling operators([a / b]) are as expected. It is useful to write a couple of agents andcheck that you know the syntax, and learn from your errors.Exercise 3 If you �nd it di�cult to commit errors, here are a couple of syn-tactically incorrect agents which inexperienced users are likely to type. Feedthem to the CWB in agent commands and digest the error messages. Canyou correct the errors, i.e., give syntactically correct agents which probably1In the CWB version 6 and earlier � was written just t.5

are what the user intended?a) a.b.0 | 'a.'b0 b) (a.b.0 | 'a.'b'.0)\a,bc) (a.0+b.0).c.0 d) a(b.0+c.0)e) (a.(b.0|c.0) f) B[a\b]g) (a.0 + tau.0)\tau h) a.(b.0|c.)You may use agent identi�ers in agents even if the identi�ers are unbound.For example, if X is an identi�er without a binding it is OK to write agentA = a.X;. The CWB will not complain until you try to analyze A when Xis still unbound. You may also use identi�ers recursively, as in agent A =a.A; and in this way the agent command can be thought of as correspondingto Constant de�nitions, such as A def= a:A, in Milner.3 Analysis3.1 Exploring Transitions transitionsThe most basic analysis of agent behaviours is to determine transitions. Thisis accomplished with the command transitions, or its equivalent short formtr. The command takes one agent as a parameter and will list the transitionsfrom that agent. Examples:Command: transitions a.0;--- a ---> 0Command: tr a.E|b.F;--- a ---> E | b.F--- b ---> a.E | FExercise 4 Check the transitions from the following agents (if you wish youmay compare with Milner p. 46{47). First try to �gure it out in your head,and then use the CWB to verify your e�ort.
6

a) a.E | 'a.F b) (a.E | 'a.F)\ac) (a.E+b.0) | c.F d) ((a.0+b.0) | (c.0+d.0))e) (a.E+b.0) | 'a.F f) ((a.E+b.0) | 'a.F)\aNote that these examples all work when E and F are unbound.Exercise 5 Check the transitions from a.0 + E when E is unbound. Whaterror message do you get? Why don't you get that message for the otherexamples above? (Partial solution below.)The transitions command only gives the initial transitions from anagent.Command: tr a.E;--- a ---> EThe derivative E is not at all analyzed by this command. The CWB doesnot need to know what E is bound to in order to compute the transition. Incontrast, when you try a.0 + E the workbench will need to know what Eis bound to, because the transitions from E are also transitions from a.0+E.So unbound identi�ers are not harmful per se, only when their bindings are unboundidenti�ersactually needed to compute the analysis results.The next example is a recursive \a-screamer", something that repeatedlydoes a:Command: agent A = a.A;Command: tr A;--- a ---> AExercise 6Keep the de�nition of A above and de�ne agent B = b.B + a.A;.What are the transitions from B here? What are the transitions from A|B?Try to �gure it out in your head before checking with the CWB.There is one pitfall when computing transitions from recursively de�nedidenti�ers. If the recursion is unguarded, i.e., an identi�er recurs without any unguardedrecursionsurrounding (\guarding") pre�x, the Workbench will not cooperate.7

ommand: agent C = a.0 + C;Command: tr C;Resetting tables...*** Non-well-founded recursion in C ***In this example C occurs both guarded and unguarded, and apparently theunguarded occurrence is enough to make the CWB refuse. The rule of thumbis that if you start with an identi�er and can thread you way through def-initions to the same identi�er without passing a pre�x, then that identi�ersu�ers from unguarded (or synonymously \non-well-founded") recursion.Probably you will often be interested in exploring the behaviour of anagent beyond the initial transitions. Of course you may apply the tr com-mand repeatedly to the derivatives to do this. For example, if A is bound toa.b.A you will �nd that A has one transition leading to b.A, and you canapply tr again to verify that b.A has one transition leading back to A. If thereare several transitions it becomes cumbersome to repeatedly type in all theagents you encounter in this way. A better way is to use the sim command.This command starts a little simulator where you can more conveniently simexplore transitions. As an example simulate the agent(a.b.0 | a.c.0 | 'a.0)\aThis agent has three parallel components: two of them begin by a and con-tinue with b and c respectively, and the third begins by 'a and can thereforesynchronize with either of the �rst two.Command: sim (a.b.0 | a.c.0 | 'a.0)\a;Simulated agent: (a.b.0 | a.c.0 | 'a.0)\aTransitions:1: --- tau<a> ---> (a.b.0 | c.0 | 0)\a2: --- tau<a> ---> (b.0 | a.c.0 | 0)\a8

[0]Sim:This tells us there are two transitions from the agent. Both are � -transitionsarising from a synchronization along a. The simulator then prompts us tochoose one of these transitions. Let us choose the �rst by typing 1 followedby semicolon:[0]Sim: 1;--- tau<a> --->Simulated agent: (a.b.0 | c.0 | 0)\aTransitions:1: --- c ---> (a.b.0 | 0 | 0)\a[1]Sim:This tells us that after the �rst � transition the agent can continue witha c transition. Again we can choose to explore the behaviour after thistransition by typing 1 followed by semicolon. Or we can backtrack to theprevious state by typing return followed by a number; we will then comeback to the numbered position of simulation to make another choice. Thesimulation position numbers are given in square brackets in front of thesimulator prompt. The �rst one here is 0 so we return to the original agentas follows:2[1]Sim: return 0;Simulated agent: (a.b.0 | a.c.0 | 'a.0)\aTransitions:1: --- tau<a> ---> (a.b.0 | c.0 | 0)\a2: --- tau<a> ---> (b.0 | a.c.0 | 0)\a[0]Sim:2In the earliest release of CWB 7.0 there is a bug: \0" (zero) is not recognized as anumber in a return command. Therefore this example will not work.9

In this way you can explore the agent, moving forward and backward throughtransitions. The simulator has a few other useful commands, such as historywhich gives you a list of the agents encountered so far together with theirposition numbers. The manual gives a full listing of the commands but ini-tially you will only need the ones mentioned here. You exit the simulator andreach the CWB command prompt through the quit; command or throughcontrol-c.Exercise 7 Continue the simulation of the agent above. What are the dif-ferent agents you can reach? How many transitions are there in all? Howdoes the simulator react when you want to progress from an agent that hasno transitions?3.2 Exploring DeeperThere are many commands in the Workbench which allow you to explorebehaviours without stopping at all transitions. One is the vs command. vsIt computes the \visible sequences" of certain lengths. A visible sequencefrom an agent is a sequence of visible, i.e. non-� , actions that the agentcan perform. Try the following example of an agent that repeatedly receivessignals on in and emits them on out, until it does an abort signal whenit stops. To make the example more interesting we let the agent make aninternal choice on whether to do the abort or continue with the in outsequence.Command: agent A = tau.in.'out.A + tau.abort.0;Command: vs(1,A);=== abort ===>=== in ===>Command: vs(2,A);=== in 'out ===>Command: vs(3,A);=== in 'out abort ===> 10

=== in 'out in ===>The vs command takes two parameters: an integer signifying the length ofthe sequences you are interested in, and the agent from which you want tocompute the sequences. Note that these must be enclosed in parentheses andseparated by a comma | this convention applies to most CWB commandsthat take more than one parameter.As is evident from this example the result of the vs command does notrecord the � -actions. In accordance with the conventions in Milner the doublearrow (==>) is therefore used to display the output.Exercise 8 Here A can only do the abort before in, and not between inand out. Change the de�nition of A so that it can abort also between inand out. Check your solution with the vs command.The vs command does not tell you what the derivatives are. Anothercommand, obs, will additionally tell you the derivatives (try it on this ex-ample). If you want a list of the reachable states from an agent you can obsstatessizeget it with the states command, and if you only want to know how manydi�erent states there are you can use the size command. These take justone parameter, the agent to be analyzed. The e�ect on the example aboveis:Command: states A;1: 02: abort.03: 'out.A4: in.'out.A5: ACommand: size A;A has 5 states.Exercise 9 Try states and size on the agent in Exercise 8.Unbound identi�ers and unguarded recursion are inadmissible for all thesecommands if the Workbench encounters it while computing the result. An-11

other and nastier kind of error is when the state space is in�nite. An exampleof this is in the agent B = push.(B | pop.0). in�nitestatespaceExercise 10 Type in this binding and check the visible sequences of length1 through 4.Can you see the pattern? This agent can only do pop if it is preceded byenough push'es | think of push as incrementing a counter and pop decre-menting it, where the counter may never be negative. Are you interested tosee how the agent evolves in the transitions?Exercise 11 Try the simulator on B for a few steps until you understandhow it works.The state space of this B is in�nite | to continue the analogy the counterhas one state for each positive integer | so if you try the states or sizecommand on B the CWB will embark on a nonterminating computation try-ing to get to all states. Eventually the CWB will run out of memory, but youcan abort the command with control-c at any point. Unfortunately you getno error message because the CWB cannot know in advance that the statespace really is in�nite. It is useful to remember that if a command does notappear to terminate the second most common reason is an in�nite (or verylarge) state space. The most common reason, of course, is that you forgotthe semicolon.If the state space is �nite but large it may take the CWB some time tocomplete the command. The following is an educational exercise to �nd outthe performance of your system. De�ne C to be a.0. Check that C has twostates, that C|C has four states, that C|C|C has eight states etc. By addingon another parallel factor C you double the state space, and also the timetaken for the CWB to compute it, until you can measure the time with yourwatch.Exercise 12 How many states can you do in this way before it takes morethan 30 seconds for the CWB to compute them, in the size command, onyour computer?
12

Hand-in 1 Let B = in.'out.B, i.e., B represents a one-place bu�er. LetC = (B[m=out]jB[m=in])nmi.e., C represents two connected one-place bu�ers. Draw the transition graphfor C. A good way is to use the states command to learn the reachablestates. Write them down well separated on a sheet of paper, and then usethe simulator command to explore all transitions between them. Use thetransition graph to deduce the visible sequences of length 4 by tracing pathsin the graph and then check the result with the vs command.1! As a �nal simple example of analysis commands there is the sort com-mand, which calculates the syntactic sort of an agent (Milner Ch. 2.7). This sortis useful to catch typing mistakes. The sort command takes one agent as aparameter and returns the non-restricted action names within it. For exam-ple, assume that you have an agent working with actions a, b, c and theirco-actions:agent X = (a.b.X | a'.c.0 | 'a.'b.X)\{a,b};Since a and b are restricted the only name in the sort of X should be c. Butchecking this we getCommand: sort X;{a',c}Aha | there is a misprint in that the quote comes on the wrong side of a.Easily corrected:Command: agent Y = (a.b.X | 'a.c.0 | 'a.'b.X)\{a,b};That's it isn't it? Perhaps we should check with sort again to make realsure:Command: sort Y;{a',c}What now? Why is the action a' still there in the sort?Exercise 13 Why is it indeed? This is also a common type of error whichsort often catches! 13

3.3 File HandlingWhen you work with larger examples you will probably want to store themin an editable �le, to avoid having to retype large amounts of text whenyou analyze variants of the agents. The easy way here is to use an editor tocreate a text �le containing Workbench commands, exactly as they should betyped interactively to the CWB. Suppose you save this �le under the name inputmyexample.cwb (the su�x .cwb is not mandatory but will help you maintainorder among your �les). Let that �le containagent A = a.b.A;size A;vs(5,A);You can then execute that �le from the CWB by giving it the commandinput "myexample.cwb";. Note that there must be quotes around the �le-name. The CWB will then execute the commands in that �le and displaythe results. In this case the output is:Command: input "myexample.cwb";A has 2 states.=== a b a b a ===>As you see the commands themselves are not displayed. If there is an errorin an input �le the CWB will revert to receiving input from the terminal. Ifyou have a truly large example you may wish to insert comments into the�le. A comment begins with an asterisk , *, and extends to the end of theline.Occasionally a command may produce a large amount of output whichyou want to go over in an editor. The output "myoutput.out"; command outputdirects all output from the CWB onto the �le myoutput.out. This onlya�ects output from successful commands; error messages and such will stillbe displayed on the terminal. The command output; (without a �lename)redirects all output to the terminal.
14

4 Further Examples4.1 Resources and UsersIn this section we shall consider models of resource managers and users.The resources may be bu�er space, processor capacity, communication band-width, etc. The users may be programs, protocol entities, pieces of hardwareand the like. Users occasionally need resources to complete their tasks, whichcould be to compute something, to communicate something, to print some-thing etc. For our treatment the particulars do not matter | we could eventhink of the resources as co�ee, beer etc. and the users as students whichneed these in order to complete their studies. The important thing is thelogical procedure for access.In the simplest case we have a system with one user U and one manager Mcontrolling one resource. The manager grants access to the resource throughthe action 'g. The user U repeatedly accesses this resource and performs atask, t.agent M = 'g.M;agent U = g.t.U;agent Sys = (M|U)\g;In this simple case the user should have no problem in always getting theresource. There is no competition | the system works like a bar with onlyone customer and a bartender who keeps pouring co�ee at requests. So thesystem should behave as something which just repeatedly does t.Exercise 14 Check this with the vs command.Some kinds of design errors will be uncovered by using the vs commandin this way. For example, if we (mistakenly) had de�ned a system with abartender who never does anything (put M2 = 0 and Sys2 = (M2jU)ng thenthe inactivity of the system would be manifest already in sequences of lengthone.Exercise 15 Check this!An interesting problem now arises. How long sequences do we actually15

need to check with the vs command to be absolutely sure that Sys doesthe right thing? This question may appear ridiculous since Sys here is sosimple. But in principle it is a tough problem. Suppose that Sys is somethingmuch more complex. How do we know that it will always keep doing theset actions?We can demonstrate the di�culty by de�ning a similar system with amore erratic bartender who may at any moment resign and leave the customerunattended:agent M3 = 'g.M3 + tau.0;agent Sys3 = (M3|U)\g;Exercise 16 Check the visible sequences from Sys3 here.The visible sequence from Sys3 are the same as from Sys! The reason isthat vs reports all possible sequences, and the bartender M3 always has thepossibility of continuing. The fact that the bartender may also resign doesnot in
uence the possible sequences. So no matter how long sequences youtry you will not see a di�erence between Sys and Sys3. On the other handwe would in reality be much happier with a persistent bartender. And if wedesign a system we would like to ascertain that there is no possibility for theresource managers to suddenly stop.4.2 More Analysis MethodsWe conclude that checking visible sequences is no guarantee of correct be-haviour here | we need more re�ned methods. One such is to simulate thebehaviour under study. In this case that is quite e�ective: when simulatingSys3 we soon reach a state where the simulator says� � Deadlocked: � �meaning there are no further transitions. Since the original intention of thesystem was to run perpetually such a deadlocked state constitutes an error.However, we may not always be lucky to discover the deadlocks quickly. Ingeneral the state space may be so large that interactive simulation is out ofthe question. 16

For this reason there are commands in the CWB who perform more or lesscomplex analyzes on agents. An example is the deadlocks, or in short formfd command. This takes one agent as a parameter and reports all deadlocks, deadlocksfdi.e.,. states with no outgoing visible transitions. Try this on Sys and Sys3:Command: fd Sys;No such agents.Command: fd Sys3;--- tau ---> (0 | U)\gSo there is one deadlock in Sys3 but no in Sys (we also learn through what se-quence of actions the deadlock can be reached | sometimes this informationis valuable for correcting errors).Remember that a deadlock is not always a bad thing. Some systems maybe intentionally designed to contain terminating states. The CWB will justlist the deadlock states but cannot know whether they are intentional termi-nations or manifestations of design errors | that is your job, as a designer,to �gure out! For example, if the user only wants to do 5 transactions t wegetagent U2 = g.t.g.t.g.t.g.t.g.t.0;agent Sys4 = (M|U2)\g;and then the system intentionally contains a terminating state which will befound by the fd command.Another example of an analysis command is eq which takes two agents asparameters and tells you whether the agents are equivalent. Here \equivalence" eqis formally de�ned in Milner Ch. 5 (it is the observation equivalence, alsocalled weak bisimulation equivalence) but for the present we need not beconcerned with the precise mathematical de�nition. Su�ce it to say that fortwo agents to be equivalent their states must \match" in terms of ability toperform observable actions. So whenever one of the agents can do an action,the other can do the same action and again reach a matching state.Now de�ne a t-screamer, an agent that does t repeatedly, and let thatserve as a reference speci�cation of the intended behaviour of the system.We can check which of our systems satis�es this speci�cation:17

Command: agent Spec = t.Spec;Command: eq(Sys, Spec);trueCommand: eq(Sys3, Spec);falseThe result that Sys is equivalent to Spec is a quite strong result. Spec hasonly one state, namely itself, so equivalence implies that all states in Sys havethe same observable behaviour as Spec, i.e., can do a t action. Of coursethis does not hold for Sys3 since there is a deadlock in that agent.Now clear out these de�nitions and let us consider a resource managercontrolling two resources, granting them with g and f. Let there also betwo kinds of users requiring di�erent resources in order to complete di�erenttasks t and u:agent U1 = f.t.U1;agent U2 = g.u.U2;agent M = 'f.M+'g.M;agent Sys= (U1|U2|M)\{f,g};We hope that Sys will behave as an arbitrary interleaving of t and u actions| otherwise there is something wrong with our resource manager!Exercise 17 Check the behaviour of this Sys with the vs and fd command.Find a simple speci�cation which is equivalent to Sys.It is interesting to explore other resource managers here and determineto what extent they function well with these users. To save ourselves thetrouble of typing in the de�nition of Sys with each such manager we use theCWB facility of parameterised agents. This is most easily explained through parameterisedagentsan example. The parameterised system Psys, which depends on a not yetdetermined resource manager X, isagent Psys(X) = (U1|U2|X)\{f,g};The di�erence from an ordinary agent de�nition is that the identi�er to theleft of = has a formal parameter, here X. The agent on the right refers tothe formal parameter. Thus Psys requires an actual parameter in order to18

function as an agent. We can for example write Psys(M), this gives us thesame as Sys.Command: vs(2,Psys(M));=== t t ===>=== t u ===>=== u t ===>=== u u ===>We can now check the behaviour of a system with a biased resource allocatorthat only grants requests from U1 but refuses to cooperate with U2:Command: agent M1 = 'f.M1;Command: vs(2,Psys(M1));=== t t ===>Now de�ne other managers:agent M2 = tau.'f.M2 + tau.'g.M2;agent M3 = 'f.'g.M3;Here M2 di�ers from M in that it decides on itself whether to grant an f or ag, and M3 insists on granting them in order.Exercise 18 Explore the behaviours of Psys(M2) and Psys(M3). Can youcorrectly guess the visible sequences? Does either of them have a deadlock?How many states do they have? Is either of them equivalent to Sys?If you solved this exercise correctly you may be worried that Psys(M2)and Sys appear to have the same visible sequences and no deadlocks, yetthey are not deemed equivalent. A little experimentation with the simulatorreveals that indeed there is a subtle di�erence between the two: Psys(M2)can maneuver, through a sequence of tau actions, to a state where t is theonly action available for continuation. In Sys on the other hand, whenevert is available there appears to be a possibility to continue with u (possiblyby �rst doing a tau action). In other words, Psys(M2) may decide to refuseu, while Sys will not refuse any of t, u.19

Exercise 19 Simulate Psys(M2) until you �nd this state. Simulate Sys untilyou are convinced it has no such state.This aspect of the behaviour could be important in an environment thatdoes not want to do t. We would expect Sys to function well in such an blockingenvironmentenvironment, while Psys(M2) might reach a deadlock if it insists on contin-uing with t and the environment insists on continuing with u. We can letthe Workbench determine this automatically for us if we analyze agents thatrepresent Sys and Psys(M2) within such an environment. The simplest suchis restricting on t, i.e., Sys\t corresponds to Sys within an environmentthat blocks t, and similarly Psys(M2)\t corresponds to Psys(M2) within thesame environment.Exercise 20 Analyze these two agents. What is the di�erence in terms ofdeadlocks? Does the same idea work if you consider an environment thatblocks u rather than t?You can also use the equivalence command to get at the di�erence betweenSys and Psys(M2). The only action in the sort of Sys\t is u, so since themanager always grants the appropriate resource we hope that this agentis equivalent to an agent that repeatedly does u actions. But Psys(M2)\tshould not be equivalent if it contains a deadlock, i.e., a state from which notransition is possible.Exercise 21 Verify this!You may by now have noticed that equivalence checking is actually fasterthan deadlock detection on the CWB. This is because more e�ort has beenspent on optimizing the algorithm and the code.Before proceeding to the next hand-in it may be worthwhile for you torecapitulate the analysis commands mentioned until now. The comments inthe right-hand margin are hopefully useful to let you do this quickly!
20

Hand-in 2 A system containing two users and one manager works as follows.There are two resources, called co�ee and sugar. Each user needs both ofthese and will repeatedly �rst access co�ee and then sugar (always in thatorder) to accomplish its task. The users do di�erent tasks in this way. Informulas, U = c:s:u:U V = c:s:v:VThe manager is like M above in that it always grants a resource to any re-questing user. For the environment of the system it is irrelevant when co�eeand sugar are accessed; the only relevant manifestations of the behaviours ofU and V are the completion of their tasks, here represented with actions uand v respectively.One day the president of the company decided to replace the resource man-ager with a cheaper model. This cheaper model always grants resources inorder; when it has granted co�ee it insists on granting sugar before grantingco�ee again. \Since the manager grants these in the same order as bothusers request it there can be no problem", the president declared. A newlyemployed engineer was suspicious, however. \What if one user gets co�ee",she said, \then might not the system end up in a state where that user mustcomplete its task before the second user? This could be signi�cant in anenvironment which insists that the second user proceeds �rst." | \This istoo complicated for me" the president said. \You have studied the theoryof distributed systems recently. Please prove to me either that there is aproblem with the cheaper manager, if so we will keep the old expensive one,or prove that the cheaper manager represents no problem. I don't want touse the expensive one unless it is really necessary."Luckily the engineer had access to the CWB. What did she do?The next day it turned out that one of the users, V , had changed behaviour:from now on it takes sugar before co�ee! (The other user is as before.)\Surely that can mean no problem for the cheaper manager" the presidentsaid. \Suppose the environment desires a v action. Then V just waits for Uto get co�ee. When U has got co�ee (but not yet sugar) V can get sugar andco�ee, in that order, from the cheaper manager!" But she sent the engineerto redo the analysis just to make sure. What was the result?2!
21

4.3 SemaphoresIn a more re�ned model of resource allocation we consider critical resources,i.e., resources that cannot be used by more than one user at a time. Astandard way to access such resources are through semaphores. For eachcritical resource there is one semaphore. A user who wants to access theresource \waits" at the semaphore. The semaphore keeps track of waitingusers and lets one in at the time. The user \signals" at the semaphore whenreleasing the resource, so that the semaphore can let in the next user.If we let \wait" and \signal" constitute actions, a semaphore is simplyan agent who alternates these.3agent Sem(p,v) = 'p .'v .Sem(p,v);Note in passing that an agent de�nition can have more than one formalparameter and that these can also be actions. The type of a formal parameteris determined by its �rst character.Let there be two users who each performs two actions when using a criticalresource. User1 does a followed by b, and User2 does c followed by d.agent User1 = p.a.b.v.User1;agent User2 = p.c.d.v.User2;Now consider a system of two users and one resource:agent Sys = (User1 | User2 | Sem(p,v))\{p,v};If this works the system should be able to do interleavings of a b and c d, butnothing can come between a and b (because at that point one user is at thecritical resource, and the other user must therefore wait at the semaphore)or between c and d.Exercise 22 Verify this! For example, use the vs and fd commands, andthen try to �nd an equivalent simple speci�cation equivalent to the system.A more intersting system consists of two resources and two users. Eachuser needs both resources in order to do its computation:3Dijkstra was the �rst to treat semaphores extensively. He used \P" for wait actionsand \V" for signal actions, in accordance with the Dutch words for these concepts, andthis convention has remained in modern computer science.22

agent User1 = p1.p2.a.b.v2.v1.User1;agent User2 = p1.p2.c.d.v2.v1.User2;agent Sys = (User1 | User2 | Sem(p1,v1) | Sem(p2,v2))\{p1,v1,p2,v2};Exercise 23 Verify this example too!By changing the order in which the users attempt to reserve the resourceswe get a problem. Change the second User so that it �rst waits on p2:agent User2 = p2.p1.c.d.v1.v2.User2;Exercise 24 Show there is a deadlock here!The deadlock arises, intuitively, if one user obtains one resource and theother user obtains the other resource, and then both users wait for the re-source that it lacks. This is the classical deadlock situation, known fromoperating systems and parallel programming.4 There are various strategiesfor breaking up deadlocks (by having users relinquish resources prematurely)or avoiding them (for example by insisting that all users reserve the resourcesin a particular order).Hand-in 3 A user is said to be polite if whenever it can do a wait operation, italso has the possibility to relinquish (through signal operations) all resourcesit has reserved. When there are two resources a polite user would thus bede�ned p1.(p2.a.b.v2.v1.User + v1.User)Now consider the system in the previous exercise where two users reserveresources in di�erent order. Is there a deadlock if both users are polite? Isthere a deadlock if one user is normal and one user is polite? Then consider asystem with three users and two resources. There are only two ways to ordertwo resources, so with three users two of them must order the resources inthe same way. Which of the three users need to be polite for that system toavoid deadlocks?3! 4The word \deadlock" in computer science normally means just such a situation. TheCWB terminology that every state without visible actions is a \deadlock" is not standard.23

If we are only interested in detecting this kind of deadlock we do notreally need to explicitly represent the a b c d actions | these just serveto verify that activities using critical resources cannot be interrupted. Indeadlock detection it is enough to let each user signal success.agent User1 = p1.p2.success1.v1.v2.User1;agent User2 = p2.p1.success2.v2.v1.User2;How much did the state space of Sys diminish by this? Perhaps notmuch, but for larger examples this could become important, and it makesour agents a bit easier to read and understand.Exercise 25 How about going the whole way and get rid also of the successsignals? Why is that a bad idea?On the other hand we can put the success signals anywhere in the users.We just regard them as indicators that the users progress, so it does notmatter if they sit within or outside the critical regions.Consider next an example with three users and three semaphores:agent User1 = p1.p2.suc1.v2.v1.User1;agent User2 = p1.p3.suc2.v3.v1.User2;agent User3 = p3.(p2.suc3.v2.v3.User3 + p1.suc3.v1.v3.User3);agent Sys = (User1 | User2 | User3 |Sem(p1,v1) | Sem(p2,v2) | Sem(p3,v3))\L;set L = {p1,p2,p3,v1,v2,v3};The third user is a new acquaintance: after having reserved resourcenumber three it is happy with either of resource one or resource two. (Inpassing we also note the binding of an action set identi�er | this makes theagent a bit more readable.)Does Sys here have deadlocks? It has 36 states, so it is now becomingdi�cult to guess. But we Workbench users don't have to guess!Exercise 26 Has it a deadlock? What if the third user always insists onthe left branch? (Rede�ne User3 so that the second summand, after +, is24

removed.) What if it always insists on the right branch (remove the �rstsummand?)Even when there are no deadlocks there could still be \partial dead-locks" where a subset, but not all, of the users are blocked waiting foreach other. The Workbench will not detect those with the fd commandas long as there is at least one unimpeded user that can do its success ac-tion. Partial deadlocks can instead be detected as follows. Suppose we wantto know whether User1 can be blocked, i.e., if there is a reachable statefrom which User1 cannot progress. We then put Sys in an environment thathides the other success signals suc2 and suc3 from view. This is most easilyachieved with the relabelling operator [tau/suc2,tau/suc3]. Thus we an-alyze Sys[tau/suc2,tau/suc3]. It has only one observable action, suc1, inits sort. If there is no state where User1 can be permanently blocked, thenSys[tau/suc2,tau/suc3] should be equivalent to a suc1-screamer.5Exercise 27 Check this, and check if there is a partial deadlock involvingany of the other two users. Warning: if you did the previous exercise you�rst have to reset User3 to its original de�nition.The part of a behaviour obtained by by ignoring (or relabelling to tau)actions on some of its ports is sometimes called a projection of the behaviour. projectionExercise 28 In Exercise 20 we used another kind of environment, a \block-ing" environment expressed as restriction; here the \projections" are ex-pressed as relabelling to tau. What, intuitively, is the di�erence betweenblocking environments and projections and in what di�erent situations arethey useful?Finally, a useful analysis command is min, the state space minimizationcommand. In several of the exercises you have been asked to �nd a speci�ca-tion which is simple enough to be understandable and yet equivalent (usingeq) to the original system. The CWB can �nd you this automatically. The mincommand is min and it takes two parameters: an agent identi�er and anagent. It will analyze the agent, �nd a minimal (in number of states) agent5Relabelling to � is forbidden in Milner but allowed in the CWB.25

and bind that to the identi�er. It will also tell you how many states there arein the minimal agent. To see the result of the minimization you give the pecommand. Perhaps surprisingly, min is quite e�cient | about the same aseq | so for large agents the quickest way of �nding deadlocks is to minimizethem and check (with pe) if 0 occurs in their minimized forms. An example,using the de�nitions above:Command: min(Minsys, Sys);Minsys has 12 states.Now type pe to look at it. It is perhaps too large to be informative. In thisexample it might be better to instead minimize projections.Command: min (Min,Sys[tau/suc3]);Min has 3 states.Exercise 29 Look at these three states using pe and convince yourself thatthis is the expected outcome. Do the same for other projections of Sys.Exercise 30 Consider the system consisting of the following four users andfour semaphores. Show that there is no deadlock but a partial deadlock.agent User1 = p1.p2.suc1.v2.v1.User1;agent User2 = p1.p2.suc2.v2.v1.User2;agent User3 = p3.p4.suc3.v4.v3.User3;agent User4 = p4.p3.suc4.v3.v4.User4;
26

Hand-in 4 A surveillance system consists of three parallel processes A, Band C and a set of common critical resources: a data terminal with keyboard,a large video screen, a loudspeaker, a sound detector, a motion detector, anda �le system. Processes can reserve and release the resources. A reservedresource can not be reserved by another process until it is released.Process A runs the interaction with the user. It begins by reserving thethe terminal, the screen and the loudspeaker (in that order) and conductsa session with the user. It then releases the terminal and reserves the �lesystem (keeping the screen and speaker) in order to update the �les and showa short demonstration. It then releases all resources and starts the procedurefrom the beginning.Process B does the surveillance. It reserves the motion detector, the sounddetector and the terminal (in that order) and reports any intrusions on thepremises. It then releases the motion detector and reserves the speaker, inorder to play back any suspicious sounds. It then releases all resources andstarts the procedure from the beginning.Process C runs some background jobs. First it reserves the video screen andthe �le system, to display the logotype (which is in a huge �le!) on the screen.Then it releases the screen but reserves the motion detector, to update somecalibration tables. Then it releases the �les and reserves the sound detector,to run a correlation check of the detectors. It then releases the detectors andstarts the procedure from the beginning.If a process wants to reserve a resource which is already taken, then it justwaits until that resource is released. Can this system deadlock, i.e., can itreach a state where all of A, B and C wait for resources to become released?Can it reach a partial deadlock?4! 5 ConclusionHopefully you now have con�dence that these techniques can solve nontriv-ial problems of naturally occurring kinds. The Workbench supports manymore methods. Most notably there is a modal logic in which you can stateassertions about agents, such as \action a will always precede action b", andhave the Workbench check these assertions for you on agents. And there areextensions of the language to represent other aspects of agents like elapsed27

real-time. But this is as good a time as any to stop. The Workbench manualcontains further material and references to other papers.6 Solutions to some ExercisesExercise 2. Here they are called variables because their bindings may vary;an identi�er can be rebound to a new agent. For the development of thetheory in Milner there is no need for that.Exercise 3.Agent Error Correctiona.b.0 | 'a.'b missing pre�x dot a.b.0 | 'a.'b.0(a.b.0 | 'a.'b'.0)\a,b missing set brackets (a.b.0 | 'a.'b'.0)\{a,b}(a.0+b.0).c.0 agent before pre�x dot a.c.0 + b.c.0a(b.0+c.0) missing pre�x dot a.(b.0+c.0)(a.(b.0|c.0) missing closing bracket (a.(b.0|c.0))B[a\b] wrong relabelling slash B[a/b](a.0 + tau.0)\tau tau cannot be restricteda.(b.0|c.) missing trailing 0 a.(b.0|c.0)Exercise 8. A = tau.in.(tau.abort.0 + tau.'out.A) + tau.abort.0Exercise 13. Y is bound to (a.b.X | 'a.c.0 | 'a.'b.X)\{a,b} and thisagent contains X which in turn contains a'. Instead Y should be bound to(a.b.Y | 'a.c.0 | 'a.'b.Y)\{a,b}.Exercise 17. The speci�cation is Spec = t.Spec + u.Spec.Exercise 22. You might have guessed that the speci�cation is Spec =a.b.Spec+c.d.Spec but as you see from eq that is wrong. The reason isthat if both users wait at the semaphore, one of them will proceed and thenthe system is in a state where only one of a b and c d can happen (cf thesituation with Psys(M2) in the previous section. The correct speci�cation isSpec = tau.a.b.Spec + tau.c.d.Spec.28

Exercise 25. Without the success signals there are no nonrestricted actionsin the system. The sort of the agent thus is the empty set and that meansthat all its states, formally, are deadlocks: there is no way to continue withobservable actions.Exercise 28. We use a blocking environment, expressed as restriction, toconsider the e�ects of an environment that forces the system under study toexecute in a certain way, for example in order to trigger deadlocks. We useprojections, expressed as relabelling to tau, to disregard some actions thesystem may make without forcing it to act in one way or another, just tomake it easier for us to see what happens when it executes. Thus blockingin
uences the possible executions of the system and is useful when we suspectwe could thereby trigger something interesting, while projection just limitsour view of it and is useful when the system is otherwise too complex.

29

