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1 Introduction

The goal of this workout is to make you familiar with a basic language for
formulating concurrent processes and its use in formal analysis through an
automated tool, the Concurrency Workbench (CWB). The intention is that
you should read it while running the CWB and do all examples, exercises
and hand-ins in as they come. It will probably take you the better part of a
day.

1.1 Prerequisites

e You need to have read chapters 1 and 2.1-2.7 in Milner, Communication
and Concurrency (Prentice Hall, 1989), or equivalent material, and un-
derstood it to an extent that the terms “agent”, “action”, “transition”
etc. are familiar.

e You need to have access to and briefly looked through the manual for
the CWB (version 7.0), sections 1-7 and 9, so you know roughly what
is in it. You may safely skip everything related to TCCS, SCCS, and
divergence. Keep the manual at hand and consult it at need.

e You need to use a machine where CWB version 7.0 is available, and
know how to start it. You also need to use a text editor. (No program-
ming is required.)



1.2

Grading

It is strongly recommended that you do all the exercises. The parts labelled
“hand-in” (marked [—]) serve as checkpoints for grading by teaching assis-
tants. When you solve these keep the following in mind:

You may complete the hand-ins in groups of two persons, or indi-
vidually, as you wish. No collaboration between groups is allowed.

The deadline and the possible credits you get for completing the hand-
ins in time are defined in the course PM. The deadline is strict. If
you submit your solution too late, the TAs (depending on their work-
load) may still grade it and thus give you valuable feedback, but you
will receive no credits.

Your solutions should be hand-written. The reason for this is partly
to reduce the incentive to collaborate in larger groups, and partly to
avoid too long and irrelevant computer listings. Submit no printouts
from the CWB.

You must explain how you have used the CWB to solve the hand-
ins: where appropriate, you should write down the agents under consid-
eration, the CWB commands you apply them do, and brief descriptions
and interpretations of the results. This holds even if you feel that a
hand-in is simple enough to solve in your head. The point of the hand-
ins is to test how well you have mastered the CWB.

Solutions with unclear diagrams or illegible writing will get a signifi-
cantly reduced score.



2 Getting Started

2.1 First Steps

Activate the workbench. You are greeted by a message

Edinburgh Concurrency Workbench, version 7.0,
Fri Oct 6 11:36:58 BST 1995

Command :

The first two lines tell you which version of the Workbench you have. The
third line is the CWB command prompt and means that the CWB expects
you to type in a command. Let us try the simplest command there is, so

type

quit

which according to the manual terminates execution of the workbench. Unless

you read the manual closely you are in for a disappointment. Just typing
quit (followed by Return) apparently accomplishes nothing! Could it be
that the system has crashed? An experienced Unix user will now try to type
control-c, in the hope of aborting the program. Try this! What happens?

In the CWB a control-c always returns you to the command prompt. In
order to exit from the CWB you need to type the quit command properly,
i.e., end it with a semicolon:

quit;

Remember that all commands must be terminated by semicolon before the
CWB acts on them! Now make sure that you can exit and restart the Work-
bench!

There is a rudimentary on-line help available through the command help.
Try

help;
help commands;
help quit;

control-c



As you see these are not really useful to teach you what you don’t know, but
they might serve to refresh your memory.

If you (like me) forgot the semicolon again this is a good time to find
out that commands may extend over several lines! Typing help quit; is
equivalent to typing

help
quit

A new line in a command just counts as a blank space. So semicolons are
necessary to tell the Workbench when you are finished typing the command.

2.2 Agent Environments

You can type in definitions of agents and bind them to agent identifiers, some-
times also called variables (while in Milner they are called agent Constants).
This is accomplished with the agent command. An example:

Command: agent A = a.0;

You have now bound the agent identifier A to the agent a.0; an agent that
performs an a action and then does nothing more. Agent identifiers must
begin with an upper case letter (try to violate this by typing agent a = a.0;
and check out the error message!) while actions must begin with a lower case
letter. Agents identifiers and actions may consist of several characters; the
manual will tell you exactly which ones though letters and numerals probably
suffice for your purposes now. The agent 0 in Milner is written as 0 (zero).

The bindings of identifiers to agents is stored in what is called the agent
environment. To see this try the command pe; which will print it.

Command: pe;
¥k Agents *x*

agent A = a.0

It is permissible to rebind an identifier which is already bound. The
old binding is then discarded and replaced by the new one. Try agent A
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= a.a.0; and enjoy the perhaps cryptic warning you get that A is already
bound, and then check the environment with pe;.

Exercise 1 What warning do you get?

The command clear; removes all bindings in the environment. You
won’t really need the binding above again, so why not clear it out now?

Exercise 2 Why do you think that the agent identifiers are sometimes re-
ferred to as “variables” in the CWB, whereas they are called “constants” in
Milner?

If you think that this kind of exercise is unfair, there is a solution in
Section 6 below. Most exercises in this workout are solved by using the
Workbench. For those who are not you have answers in that section.

2.3 Syntax

Using the agent command you can explore the correct syntax for writing
agents in the CWB. This is fully defined in the manual and is recapitulated
with the help syntax; command. But you will only need a subset of it.
Agents are built from actions, which are character strings beginning with
a lower case letter. The co-actions (overlined in Milner) are written by start-
ing with a single quote (’) since overlining is hard to do on a standard
keyboard. Thus what in Milner is written @ is in the CWB written ’a. And
since Greek letters are lacking, the internal action 7 in Milner is written tau
in the CWB!.
The operators for sum (+), parallel (), restriction (\) and relabelling
([ a / b 1) are as expected. It is useful to write a couple of agents and
check that you know the syntax, and learn from your errors.

Exercise 3 If you find it difficult to commit errors, here are a couple of syn-
tactically incorrect agents which inexperienced users are likely to type. Feed
them to the CWB in agent commands and digest the error messages. Can
you correct the errors, i.e., give syntactically correct agents which probably

'In the CWB version 6 and earlier 7 was written just t.



are what the user intended?

a) a.b.0 | ’a.’b0 b) (a.b.0 | ’a.’b’.0)\a,b
c) (a.0+b.0).c.0 d) a(b.0+c.0)

e) (a.(b.0lc.0) f) Bla\b]

g) (a.0 + tau.0)\tau h) a.(b.0lc.)

You may use agent identifiers in agents even if the identifiers are unbound.
For example, if X is an identifier without a binding it is OK to write agent
A = a.X;. The CWB will not complain until you try to analyze A when X
is still unbound. You may also use identifiers recursively, as in agent A =
a.A; and in this way the agent command can be thought of as corresponding

to Constant definitions, such as A ot a.A, in Milner.

3 Analysis

3.1 Exploring Transitions

|transitions

The most basic analysis of agent behaviours is to determine transitions. This
is accomplished with the command transitions, or its equivalent short form
tr. The command takes one agent as a parameter and will list the transitions
from that agent. Examples:

Command: transitions a.O0;
-— a ——>0

Command: tr a.E|b.F;
-——a ——-—->E | b.F
-—— b —-—->a.E | F

Exercise 4 Check the transitions from the following agents (if you wish you
may compare with Milner p. 46-47). First try to figure it out in your head,
and then use the CWB to verify your effort.



a) a.E | ’a.F b) (a.E | ’a.F)\a
c) (a.E+b.0) | c.F d) ((a.0+b.0) | (c.0+d.0))
e) (a.E+b.0) | ’a.F f) ((a.E+b.0) | ’a.F)\a

Note that these examples all work when E and F are unbound.

Exercise 5 Check the transitions from a.0 + E when E is unbound. What
error message do you get? Why don’t you get that message for the other
examples above? (Partial solution below.)

The transitions command only gives the initial transitions from an
agent.

Command: tr a.E;
-—— a --—> E

The derivative E is not at all analyzed by this command. The CWB does
not need to know what E is bound to in order to compute the transition. In
contrast, when you try a.0 + E the workbench will need to know what E
is bound to, because the transitions from E are also transitions from a.O0+E.
So unbound identifiers are not harmful per se, only when their bindings are
actually needed to compute the analysis results.

The next example is a recursive “a-screamer”, something that repeatedly
does a:

Command: agent A = a.A;

Command: tr A;
-——a ——> A

Exercise 6 Keep the definition of A above and define agent B = b.B + a.A;.

What are the transitions from B here? What are the transitions from A|B?
Try to figure it out in your head before checking with the CWB.

There is one pitfall when computing transitions from recursively defined
identifiers. If the recursion is unguarded, i.e., an identifier recurs without any
surrounding (“guarding”) prefix, the Workbench will not cooperate.

unbound
identifiers

unguarded
recursion




ommand: agent C = a.0 + C;
Command: tr C;

Resetting tables...

**xx Non-well-founded recursion in C **x*

In this example C occurs both guarded and unguarded, and apparently the
unguarded occurrence is enough to make the CWB refuse. The rule of thumb
is that if you start with an identifier and can thread you way through def-
initions to the same identifier without passing a prefix, then that identifier
suffers from unguarded (or synonymously “non-well-founded”) recursion.

Probably you will often be interested in exploring the behaviour of an
agent beyond the initial transitions. Of course you may apply the tr com-
mand repeatedly to the derivatives to do this. For example, if A is bound to
a.b.A you will find that A has one transition leading to b.A, and you can
apply tr again to verify that b. A has one transition leading back to A. If there
are several transitions it becomes cumbersome to repeatedly type in all the
agents you encounter in this way. A better way is to use the sim command.
This command starts a little simulator where you can more conveniently
explore transitions. As an example simulate the agent

(a.b.0 | a.c.0 | ’a.0)\a

This agent has three parallel components: two of them begin by a and con-
tinue with b and c respectively, and the third begins by ’a and can therefore
synchronize with either of the first two.

Command: sim (a.b.0 | a.c.0 | ’a.0)\a;

Simulated agent: (a.b.0 | a.c.0 | ’a.0)\a

Transitions:
1: -—— tau<a> —--> (a.b.0 | ¢c.0 | 0)\a
2: -—— tau<a> -—-—> (b.0 | a.c.0 | 0)\a



[0]Sim:

This tells us there are two transitions from the agent. Both are 7-transitions
arising from a synchronization along a. The simulator then prompts us to
choose one of these transitions. Let us choose the first by typing 1 followed
by semicolon:

[0]Sim: 1;
-——- tau<a> --->

Simulated agent: (a.b.0 | c.0 | 0)\a
Transitions:
1: =——— ¢ --=> (a.b.0 | 0 | 0)\a

[1]1Sim:

This tells us that after the first 7 transition the agent can continue with
a c transition. Again we can choose to explore the behaviour after this
transition by typing 1 followed by semicolon. Or we can backtrack to the
previous state by typing return followed by a number; we will then come
back to the numbered position of simulation to make another choice. The
simulation position numbers are given in square brackets in front of the
simulator prompt. The first one here is 0 so we return to the original agent
as follows:?

[1]1Sim: return O;

Simulated agent: (a.b.0 | a.c.0 | ’a.0)\a

Transitions:
1: --- tau<a> --—> (a.b.0 | ¢c.0 | 0)\a
2: -—— tau<a> -—-—> (b.0 | a.c.0 | 0)\a
[0]Sim:

%In the earliest release of CWB 7.0 there is a bug: “0” (zero) is not recognized as a
number in a return command. Therefore this example will not work.



In this way you can explore the agent, moving forward and backward through
transitions. The simulator has a few other useful commands, such as history
which gives you a list of the agents encountered so far together with their
position numbers. The manual gives a full listing of the commands but ini-
tially you will only need the ones mentioned here. You exit the simulator and
reach the CWB command prompt through the quit; command or through
control-c.

Exercise 7 Continue the simulation of the agent above. What are the dif-
ferent agents you can reach?” How many transitions are there in all? How
does the simulator react when you want to progress from an agent that has
no transitions?

3.2 Exploring Deeper

There are many commands in the Workbench which allow you to explore
behaviours without stopping at all transitions. One is the vs command.
It computes the “visible sequences” of certain lengths. A visible sequence
from an agent is a sequence of visible, i.e. non-7, actions that the agent
can perform. Try the following example of an agent that repeatedly receives
signals on in and emits them on out, until it does an abort signal when
it stops. To make the example more interesting we let the agent make an
internal choice on whether to do the abort or continue with the in out
sequence.

Command: agent A = tau.in.’out.A + tau.abort.0;
Command: vs(1,A);
=== gbort ===

=== 1n ===>

Command: vs(2,A);
=== in ’out ===

Command: vs(3,4);
=== in ’out abort ===>
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=== jn ’out in ===>

The vs command takes two parameters: an integer signifying the length of
the sequences you are interested in, and the agent from which you want to
compute the sequences. Note that these must be enclosed in parentheses and
separated by a comma — this convention applies to most CWB commands
that take more than one parameter.

As is evident from this example the result of the vs command does not
record the 7-actions. In accordance with the conventions in Milner the double
arrow (==>) is therefore used to display the output.

Exercise 8 Here A can only do the abort before in, and not between in
and out. Change the definition of A so that it can abort also between in
and out. Check your solution with the vs command.

The vs command does not tell you what the derivatives are. Another
command, obs, will additionally tell you the derivatives (try it on this ex-
ample). If you want a list of the reachable states from an agent you can
get it with the states command, and if you only want to know how many
different states there are you can use the size command. These take just
one parameter, the agent to be analyzed. The effect on the example above
is:

Command: states A;
0

abort.0

’out . A
in.’out.A

A

g W N -

Command: size A;

A has 5 states.

Exercise 9 Try states and size on the agent in Exercise 8.

Unbound identifiers and unguarded recursion are inadmissible for all these
commands if the Workbench encounters it while computing the result. An-
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other and nastier kind of error is when the state space is infinite. An example
of this is in the agent B = push. (B | pop.0).

Exercise 10 Type in this binding and check the visible sequences of length
1 through 4.

Can you see the pattern? This agent can only do pop if it is preceded by
enough push’es — think of push as incrementing a counter and pop decre-
menting it, where the counter may never be negative. Are you interested to
see how the agent evolves in the transitions?

Exercise 11 Try the simulator on B for a few steps until you understand
how it works.

The state space of this B is infinite — to continue the analogy the counter
has one state for each positive integer — so if you try the states or size
command on B the CWB will embark on a nonterminating computation try-
ing to get to all states. Eventually the CWB will run out of memory, but you
can abort the command with control-c at any point. Unfortunately you get
no error message because the CWB cannot know in advance that the state
space really is infinite. It is useful to remember that if a command does not
appear to terminate the second most common reason is an infinite (or very
large) state space. The most common reason, of course, is that you forgot
the semicolon.

If the state space is finite but large it may take the CWB some time to
complete the command. The following is an educational exercise to find out
the performance of your system. Define C to be a.0. Check that C has two
states, that C|C has four states, that C|C|C has eight states etc. By adding
on another parallel factor C you double the state space, and also the time
taken for the CWB to compute it, until you can measure the time with your
watch.

Exercise 12 How many states can you do in this way before it takes more

than 30 seconds for the CWB to compute them, in the size command, on
your computer?
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1 —

Hand-in 1 Let B = in.’out.B, i.e., B represents a one-place buffer. Let
C = (B[m/out]|B[m/in])\m

i.e., C represents two connected one-place buffers. Draw the transition graph
for C. A good way is to use the states command to learn the reachable
states. Write them down well separated on a sheet of paper, and then use
the simulator command to explore all transitions between them. Use the
transition graph to deduce the visible sequences of length 4 by tracing paths

in the graph and then check the result with the vs command.

As a final simple example of analysis commands there is the sort com-
mand, which calculates the syntactic sort of an agent (Milner Ch. 2.7). This
is useful to catch typing mistakes. The sort command takes one agent as a
parameter and returns the non-restricted action names within it. For exam-
ple, assume that you have an agent working with actions a, b, ¢ and their
co-actions:

agent X = (a.b.X | a’.c.0 | ’a.’b.X)\{a,b};

Since a and b are restricted the only name in the sort of X should be ¢c. But
checking this we get

Command: sort X;

{a’,c}

Aha — there is a misprint in that the quote comes on the wrong side of a.
Easily corrected:

Command: agent Y = (a.b.X | ’a.c.0 | ’a.’b.X)\{a,b};

That’s it isn’t it? Perhaps we should check with sort again to make real
sure:

Command: sort Y;

{a’,c}
What now? Why is the action a’ still there in the sort?

Exercise 13 Why is it indeed? This is also a common type of error which
sort often catches!
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3.3 File Handling

When you work with larger examples you will probably want to store them
in an editable file, to avoid having to retype large amounts of text when
you analyze variants of the agents. The easy way here is to use an editor to
create a text file containing Workbench commands, exactly as they should be
typed interactively to the CWB. Suppose you save this file under the name
myexample.cwb (the suffix .cwb is not mandatory but will help you maintain
order among your files). Let that file contain

agent A = a.b.A;
size A;
vs(5,4);

You can then execute that file from the CWB by giving it the command
input "myexample.cwb";. Note that there must be quotes around the file-
name. The CWB will then execute the commands in that file and display
the results. In this case the output is:

Command: input "myexample.cwb";

A has 2 states.
===ababa===>

As you see the commands themselves are not displayed. If there is an error
in an input file the CWB will revert to receiving input from the terminal. If
you have a truly large example you may wish to insert comments into the
file. A comment begins with an asterisk , *, and extends to the end of the
line.

Occasionally a command may produce a large amount of output which
you want to go over in an editor. The output "myoutput.out"; command
directs all output from the CWB onto the file myoutput.out. This only
affects output from successful commands; error messages and such will still
be displayed on the terminal. The command output; (without a filename)
redirects all output to the terminal.
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4 Further Examples

4.1 Resources and Users

In this section we shall consider models of resource managers and users.
The resources may be buffer space, processor capacity, communication band-
width, etc. The users may be programs, protocol entities, pieces of hardware
and the like. Users occasionally need resources to complete their tasks, which
could be to compute something, to communicate something, to print some-
thing etc. For our treatment the particulars do not matter — we could even
think of the resources as coffee, beer etc. and the users as students which
need these in order to complete their studies. The important thing is the
logical procedure for access.

In the simplest case we have a system with one user U and one manager M
controlling one resource. The manager grants access to the resource through
the action ’g. The user U repeatedly accesses this resource and performs a
task, t.

agent M = ’g.M;
agent U = g.t.U;
agent Sys = (M|U)\g;

In this simple case the user should have no problem in always getting the
resource. There is no competition — the system works like a bar with only
one customer and a bartender who keeps pouring coffee at requests. So the
system should behave as something which just repeatedly does t.

Exercise 14 Check this with the vs command.

Some kinds of design errors will be uncovered by using the vs command
in this way. For example, if we (mistakenly) had defined a system with a
bartender who never does anything (put M2 = 0 and Sys2 = (M2|U)\g then
the inactivity of the system would be manifest already in sequences of length
one.

Exercise 15 Check this!

An interesting problem now arises. How long sequences do we actually
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need to check with the vs command to be absolutely sure that Sys does
the right thing? This question may appear ridiculous since Sys here is so
simple. But in principle it is a tough problem. Suppose that Sys is something
much more complex. How do we know that it will always keep doing these
t actions?

We can demonstrate the difficulty by defining a similar system with a
more erratic bartender who may at any moment resign and leave the customer
unattended:

agent M3
agent Sys3

’g.M3 + tau.0;
(M3 \g;

Exercise 16 Check the visible sequences from Sys3 here.

The visible sequence from Sys3 are the same as from Sys! The reason is
that vs reports all possible sequences, and the bartender M3 always has the
possibility of continuing. The fact that the bartender may also resign does
not influence the possible sequences. So no matter how long sequences you
try you will not see a difference between Sys and Sys3. On the other hand
we would in reality be much happier with a persistent bartender. And if we
design a system we would like to ascertain that there is no possibility for the
resource managers to suddenly stop.

4.2 More Analysis Methods

We conclude that checking visible sequences is no guarantee of correct be-
haviour here — we need more refined methods. One such is to simulate the
behaviour under study. In this case that is quite effective: when simulating
Sys3 we soon reach a state where the simulator says

x x Deadlocked. * %

meaning there are no further transitions. Since the original intention of the
system was to run perpetually such a deadlocked state constitutes an error.
However, we may not always be lucky to discover the deadlocks quickly. In
general the state space may be so large that interactive simulation is out of
the question.
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For this reason there are commands in the CWB who perform more or less
complex analyzes on agents. An example is the deadlocks, or in short form
fd command. This takes one agent as a parameter and reports all deadlocks,
i.e.,. states with no outgoing visible transitions. Try this on Sys and Sysa3:

Command: fd Sys;
No such agents.

Command: fd Sys3;
-—- tau ---> (0 | U)\g

So there is one deadlock in Sys3 but no in Sys (we also learn through what se-
quence of actions the deadlock can be reached — sometimes this information
is valuable for correcting errors).

Remember that a deadlock is not always a bad thing. Some systems may
be intentionally designed to contain terminating states. The CWB will just
list the deadlock states but cannot know whether they are intentional termi-
nations or manifestations of design errors — that is your job, as a designer,
to figure out! For example, if the user only wants to do 5 transactions t we
get

agent U2
agent Sys4

g.t.g.t.g.t.g.t.g.t.0;
(MU2)\g;

and then the system intentionally contains a terminating state which will be
found by the fd command.
Another example of an analysis command is eq which takes two agents as

deadlocks
fd

parameters and tells you whether the agents are equivalent. Here “equivalence”

is formally defined in Milner Ch. 5 (it is the observation equivalence, also
called weak bisimulation equivalence) but for the present we need not be
concerned with the precise mathematical definition. Suffice it to say that for
two agents to be equivalent their states must “match” in terms of ability to
perform observable actions. So whenever one of the agents can do an action,
the other can do the same action and again reach a matching state.

Now define a t-screamer, an agent that does t repeatedly, and let that
serve as a reference specification of the intended behaviour of the system.
We can check which of our systems satisfies this specification:
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Command: agent Spec = t.Spec;

Command: eq(Sys, Spec);
true
Command: eq(Sys3, Spec);
false

The result that Sys is equivalent to Spec is a quite strong result. Spec has
only one state, namely itself, so equivalence implies that all states in Sys have
the same observable behaviour as Spec, i.e., can do a t action. Of course
this does not hold for Sys3 since there is a deadlock in that agent.

Now clear out these definitions and let us consider a resource manager
controlling two resources, granting them with g and f. Let there also be
two kinds of users requiring different resources in order to complete different
tasks t and u:

agent Ul = £.t.U1;
agent U2 = g.u.U2;
agent M = f.M+’g.M;

agent Sys= (U1|U2IM)\{f,g};

We hope that Sys will behave as an arbitrary interleaving of t and u actions
— otherwise there is something wrong with our resource manager!

Exercise 17 Check the behaviour of this Sys with the vs and £d command.
Find a simple specification which is equivalent to Sys.

It is interesting to explore other resource managers here and determine
to what extent they function well with these users. To save ourselves the
trouble of typing in the definition of Sys with each such manager we use the
CWB facility of parameterised agents. This is most easily explained through
an example. The parameterised system Psys, which depends on a not yet
determined resource manager X, is

agent Psys(X) = (U1]U2|X)\{f,g};

The difference from an ordinary agent definition is that the identifier to the
left of = has a formal parameter, here X. The agent on the right refers to
the formal parameter. Thus Psys requires an actual parameter in order to
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function as an agent. We can for example write Psys (M), this gives us the
same as Sys.

Command: vs(2,Psys(M));

===t t ===>
=== t u ===>
=== y t ===>
=== y u ===>

We can now check the behaviour of a system with a biased resource allocator
that only grants requests from U1l but refuses to cooperate with U2:

Command: agent M1 = ’f.M1;

Command: vs(2,Psys(M1));
==t t ===

Now define other managers:

agent M2 = tau.’f.M2 + tau.’g.M2;
agent M3 = ’f.’g.M3;

Here M2 differs from M in that it decides on itself whether to grant an f or a
g, and M3 insists on granting them in order.

Exercise 18 Explore the behaviours of Psys(M2) and Psys(M3). Can you
correctly guess the visible sequences? Does either of them have a deadlock?
How many states do they have? Is either of them equivalent to Sys?

If you solved this exercise correctly you may be worried that Psys(M2)
and Sys appear to have the same visible sequences and no deadlocks, yet
they are not deemed equivalent. A little experimentation with the simulator
reveals that indeed there is a subtle difference between the two: Psys(M2)
can maneuver, through a sequence of tau actions, to a state where t is the
only action available for continuation. In Sys on the other hand, whenever
t is available there appears to be a possibility to continue with u (possibly
by first doing a tau action). In other words, Psys (M2) may decide to refuse
u, while Sys will not refuse any of t, u.

19



Exercise 19 Simulate Psys (M2) until you find this state. Simulate Sys until
you are convinced it has no such state.

This aspect of the behaviour could be important in an environment that
does not want to do t. We would expect Sys to function well in such an
environment, while Psys(M2) might reach a deadlock if it insists on contin-
uing with t and the environment insists on continuing with u. We can let
the Workbench determine this automatically for us if we analyze agents that
represent Sys and Psys(M2) within such an environment. The simplest such
is restricting on t, i.e., Sys\t corresponds to Sys within an environment
that blocks t, and similarly Psys (M2) \t corresponds to Psys (M2) within the
same environment.

Exercise 20 Analyze these two agents. What is the difference in terms of
deadlocks? Does the same idea work if you consider an environment that
blocks u rather than t?

You can also use the equivalence command to get at the difference between
Sys and Psys(M2). The only action in the sort of Sys\t is u, so since the
manager always grants the appropriate resource we hope that this agent
is equivalent to an agent that repeatedly does u actions. But Psys(M2)\t
should not be equivalent if it contains a deadlock, i.e., a state from which no
transition is possible.

Exercise 21 Verify this!

You may by now have noticed that equivalence checking is actually faster
than deadlock detection on the CWB. This is because more effort has been
spent on optimizing the algorithm and the code.

Before proceeding to the next hand-in it may be worthwhile for you to
recapitulate the analysis commands mentioned until now. The comments in
the right-hand margin are hopefully useful to let you do this quickly!
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Hand-in 2 A system containing two users and one manager works as follows.
There are two resources, called coffee and sugar. Each user needs both of
these and will repeatedly first access coffee and then sugar (always in that
order) to accomplish its task. The users do different tasks in this way. In
formulas,

U=c.s.uU V=css.v.V

The manager is like M above in that it always grants a resource to any re-
questing user. For the environment of the system it is irrelevant when coffee
and sugar are accessed; the only relevant manifestations of the behaviours of
U and V are the completion of their tasks, here represented with actions u
and v respectively.

One day the president of the company decided to replace the resource man-
ager with a cheaper model. This cheaper model always grants resources in
order; when it has granted coffee it insists on granting sugar before granting
coffee again. “Since the manager grants these in the same order as both
users request it there can be no problem”, the president declared. A newly
employed engineer was suspicious, however. “What if one user gets coffee”,
she said, “then might not the system end up in a state where that user must
complete its task before the second user? This could be significant in an
environment which insists that the second user proceeds first.” — “This is
too complicated for me” the president said. “You have studied the theory
of distributed systems recently. Please prove to me either that there is a
problem with the cheaper manager, if so we will keep the old expensive one,
or prove that the cheaper manager represents no problem. I don’t want to
use the expensive one unless it is really necessary.”

Luckily the engineer had access to the CWB. What did she do?

The next day it turned out that one of the users, V', had changed behaviour:
from now on it takes sugar before coffee! (The other user is as before.)
“Surely that can mean no problem for the cheaper manager” the president
said. “Suppose the environment desires a v action. Then V just waits for U
to get coffee. When U has got coffee (but not yet sugar) V' can get sugar and
coffee, in that order, from the cheaper manager!” But she sent the engineer
to redo the analysis just to make sure. What was the result?
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4.3 Semaphores

In a more refined model of resource allocation we consider critical resources,
i.e., resources that cannot be used by more than one user at a time. A
standard way to access such resources are through semaphores. For each
critical resource there is one semaphore. A user who wants to access the
resource “waits” at the semaphore. The semaphore keeps track of waiting
users and lets one in at the time. The user “signals” at the semaphore when
releasing the resource, so that the semaphore can let in the next user.

If we let “wait” and “signal” constitute actions, a semaphore is simply
an agent who alternates these.?

agent Sem(p,v) = ’p .’v .Sem(p,v);

Note in passing that an agent definition can have more than one formal
parameter and that these can also be actions. The type of a formal parameter
is determined by its first character.

Let there be two users who each performs two actions when using a critical
resource. Userl does a followed by b, and User2 does ¢ followed by d.

agent Userl
agent User2

p.a.b.v.Userl;
p.c.d.v.User2;

Now consider a system of two users and one resource:
agent Sys = (Userl | User2 | Sem(p,v))\{p,v};

If this works the system should be able to do interleavings of a b and ¢ d, but
nothing can come between a and b (because at that point one user is at the
critical resource, and the other user must therefore wait at the semaphore)
or between ¢ and d.

Exercise 22 Verify this! For example, use the vs and fd commands, and
then try to find an equivalent simple specification equivalent to the system.

A more intersting system consists of two resources and two users. Each
user needs both resources in order to do its computation:

3Dijkstra was the first to treat semaphores extensively. He used “P” for wait actions
and “V” for signal actions, in accordance with the Dutch words for these concepts, and
this convention has remained in modern computer science.
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agent Userl = pl.p2.a.b.v2.v1.Userl;
agent User2 = pl.p2.c.d.v2.v1.User2;
agent Sys = (Userl | User2 | Sem(pl,vl) | Sem(p2,v2))\{pl,vi,p2,v2};

Exercise 23 Verify this example too!

By changing the order in which the users attempt to reserve the resources
we get a problem. Change the second User so that it first waits on p2:

agent User2 = p2.pl.c.d.vl.v2.User2;

Exercise 24 Show there is a deadlock here!

The deadlock arises, intuitively, if one user obtains one resource and the
other user obtains the other resource, and then both users wait for the re-
source that it lacks. This is the classical deadlock situation, known from
operating systems and parallel programming.* There are various strategies
for breaking up deadlocks (by having users relinquish resources prematurely)
or avoiding them (for example by insisting that all users reserve the resources
in a particular order).

Hand-in 3 A user is said to be polite if whenever it can do a wait operation, it
also has the possibility to relinquish (through signal operations) all resources
it has reserved. When there are two resources a polite user would thus be
defined

pl.(p2.a.b.v2.v1.User + v1.User)

Now consider the system in the previous exercise where two users reserve
resources in different order. Is there a deadlock if both users are polite? Is
there a deadlock if one user is normal and one user is polite? Then consider a
system with three users and two resources. There are only two ways to order
two resources, so with three users two of them must order the resources in
the same way. Which of the three users need to be polite for that system to
avoid deadlocks?

4The word “deadlock” in computer science normally means just such a situation. The
CWB terminology that every state without visible actions is a “deadlock” is not standard.
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If we are only interested in detecting this kind of deadlock we do not
really need to explicitly represent the a b ¢ d actions — these just serve
to verify that activities using critical resources cannot be interrupted. In
deadlock detection it is enough to let each user signal success.

agent Userl
agent User2

pl.p2.successl.vl.v2.Userl;
p2.pl.success2.v2.v1l.User2;

How much did the state space of Sys diminish by this? Perhaps not
much, but for larger examples this could become important, and it makes
our agents a bit easier to read and understand.

Exercise 25 How about going the whole way and get rid also of the success
signals? Why is that a bad idea?

On the other hand we can put the success signals anywhere in the users.
We just regard them as indicators that the users progress, so it does not
matter if they sit within or outside the critical regions.

Consider next an example with three users and three semaphores:

agent Userl
agent User2
agent User3

pl.p2.sucl.v2.v1l.Userl;
pl.p3.suc2.v3.v1.User2;
p3.(p2.suc3.v2.v3.User3 + pl.suc3.vl.v3.User3);

agent Sys = (Userl | User2 | User3 |
Sem(pl,v1l) | Sem(p2,v2) | Sem(p3,v3))\L;
set L = {p1,p2,p3,vl,v2,v3};

The third user is a new acquaintance: after having reserved resource
number three it is happy with either of resource one or resource two. (In
passing we also note the binding of an action set identifier — this makes the
agent a bit more readable.)

Does Sys here have deadlocks? It has 36 states, so it is now becoming
difficult to guess. But we Workbench users don’t have to guess!

Exercise 26 Has it a deadlock? What if the third user always insists on
the left branch? (Redefine User3 so that the second summand, after +, is
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removed.) What if it always insists on the right branch (remove the first
summand?)

Even when there are no deadlocks there could still be “partial dead-
locks” where a subset, but not all, of the users are blocked waiting for
each other. The Workbench will not detect those with the fd command
as long as there is at least one unimpeded user that can do its success ac-
tion. Partial deadlocks can instead be detected as follows. Suppose we want
to know whether Userl can be blocked, i.e., if there is a reachable state
from which User1 cannot progress. We then put Sys in an environment that
hides the other success signals suc2 and suc3 from view. This is most easily
achieved with the relabelling operator [tau/suc2,tau/suc3]. Thus we an-
alyze Sys[tau/suc2,tau/suc3]. It has only one observable action, sucl, in
its sort. If there is no state where User1 can be permanently blocked, then
Sys[tau/suc2,tau/suc3] should be equivalent to a suci-screamer.’

Exercise 27 Check this, and check if there is a partial deadlock involving
any of the other two users. Warning: if you did the previous exercise you
first have to reset User3 to its original definition.

The part of a behaviour obtained by by ignoring (or relabelling to tau)
actions on some of its ports is sometimes called a projection of the behaviour.

Exercise 28 In Exercise 20 we used another kind of environment, a “block-
ing” environment expressed as restriction; here the “projections” are ex-
pressed as relabelling to tau. What, intuitively, is the difference between
blocking environments and projections and in what different situations are
they useful?

Finally, a useful analysis command is min, the state space minimization
command. In several of the exercises you have been asked to find a specifica-
tion which is simple enough to be understandable and yet equivalent (using
eq) to the original system. The CWB can find you this automatically. The
command is min and it takes two parameters: an agent identifier and an
agent. It will analyze the agent, find a minimal (in number of states) agent

"Relabelling to 7 is forbidden in Milner but allowed in the CWB.
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and bind that to the identifier. It will also tell you how many states there are
in the minimal agent. To see the result of the minimization you give the pe
command. Perhaps surprisingly, min is quite efficient — about the same as
eq — so for large agents the quickest way of finding deadlocks is to minimize
them and check (with pe) if 0 occurs in their minimized forms. An example,
using the definitions above:

Command: min(Minsys, Sys);

Minsys has 12 states.

Now type pe to look at it. It is perhaps too large to be informative. In this
example it might be better to instead minimize projections.

Command: min (Min,Sys[tau/suc3]);

Min has 3 states.

Exercise 29 Look at these three states using pe and convince yourself that
this is the expected outcome. Do the same for other projections of Sys.

Exercise 30 Consider the system consisting of the following four users and
four semaphores. Show that there is no deadlock but a partial deadlock.

agent Userl
agent User2
agent User3
agent User4

pl.p2.sucl.v2.v1l.Userl;
pl.p2.suc2.v2.v1.User2;
p3.p4.suc3d.v4.v3.User3;
p4.p3.suc4d.v3.v4.User4;
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Hand-in 4 A surveillance system consists of three parallel processes A, B
and C' and a set of common critical resources: a data terminal with keyboard,
a large video screen, a loudspeaker, a sound detector, a motion detector, and
a file system. Processes can reserve and release the resources. A reserved
resource can not be reserved by another process until it is released.

Process A runs the interaction with the user. It begins by reserving the
the terminal, the screen and the loudspeaker (in that order) and conducts
a session with the user. It then releases the terminal and reserves the file
system (keeping the screen and speaker) in order to update the files and show
a short demonstration. It then releases all resources and starts the procedure
from the beginning.

Process B does the surveillance. It reserves the motion detector, the sound
detector and the terminal (in that order) and reports any intrusions on the
premises. It then releases the motion detector and reserves the speaker, in
order to play back any suspicious sounds. It then releases all resources and
starts the procedure from the beginning.

Process C runs some background jobs. First it reserves the video screen and
the file system, to display the logotype (which is in a huge file!) on the screen.
Then it releases the screen but reserves the motion detector, to update some
calibration tables. Then it releases the files and reserves the sound detector,
to run a correlation check of the detectors. It then releases the detectors and
starts the procedure from the beginning.

If a process wants to reserve a resource which is already taken, then it just
waits until that resource is released. Can this system deadlock, i.e., can it
reach a state where all of A, B and C' wait for resources to become released?
Can it reach a partial deadlock?

5 Conclusion

Hopefully you now have confidence that these techniques can solve nontriv-
ial problems of naturally occurring kinds. The Workbench supports many
more methods. Most notably there is a modal logic in which you can state
assertions about agents, such as “action a will always precede action b”, and
have the Workbench check these assertions for you on agents. And there are
extensions of the language to represent other aspects of agents like elapsed
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real-time. But this is as good a time as any to stop. The Workbench manual
contains further material and references to other papers.

6 Solutions to some Exercises
Exercise 2. Here they are called variables because their bindings may vary;

an identifier can be rebound to a new agent. For the development of the
theory in Milner there is no need for that.

Exercise 3.

Agent Error Correction
a.b.0 | ’a.’b missing prefix dot a.b.0 | ’a.’b.0
(a.b.0 | ’a.’b’.0)\a,b missing set brackets (a.b.0 | ’a.’b’.0)\{a,b}
(a.0+b.0) .c.0 agent before prefix dot a.c.0 + b.c.0
a(b.0+c.0) missing prefix dot a.(b.0+c.0)
(a.(b.0lc.0) missing closing bracket (a.(b.0lc.0))
B[a\b] wrong relabelling slash ~ B[a/b]
(a.0 + tau.0)\tau tau cannot be restricted
a.(.0lc.) missing trailing 0 a.(b.0lc.0)
Exercise 8. A = tau.in.(tau.abort.0 + tau.’out.A) + tau.abort.0

Exercise 13. Yisboundto (a.b.X | ’a.c.0 | ’a.’b.X)\{a,b} and this
agent contains X which in turn contains a’. Instead Y should be bound to
(a.b.Y | ’a.c.0 | ’a.’b.Y)\{a,b}.

Exercise 17. The specification is Spec = t.Spec + u.Spec.

Exercise 22. You might have guessed that the specification is Spec =
a.b.Spec+c.d.Spec but as you see from eq that is wrong. The reason is
that if both users wait at the semaphore, one of them will proceed and then
the system is in a state where only one of a b and ¢ d can happen (cf the
situation with Psys(M2) in the previous section. The correct specification is
Spec = tau.a.b.Spec + tau.c.d.Spec.
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Exercise 25. Without the success signals there are no nonrestricted actions
in the system. The sort of the agent thus is the empty set and that means
that all its states, formally, are deadlocks: there is no way to continue with
observable actions.

Exercise 28. We use a blocking environment, expressed as restriction, to
consider the effects of an environment that forces the system under study to
execute in a certain way, for example in order to trigger deadlocks. We use
projections, expressed as relabelling to tau, to disregard some actions the
system may make without forcing it to act in one way or another, just to
make it easier for us to see what happens when it executes. Thus blocking
influences the possible executions of the system and is useful when we suspect
we could thereby trigger something interesting, while projection just limits
our view of it and is useful when the system is otherwise too complex.
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