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1
Processes

In this chapter, processes are introduced as expressions of a simple lan-
guage built from a few basic operators. The behaviour of a process E is
characterised by transitions of the form E a−→ F , that E may become F
by performing the action a. Structural rules prescribe behaviour, since the
transitions of a compound process are determined by those of its compo-
nents. Concrete pictorial summaries of behaviour are presented as labelled
graphs, which are collections of transitions. We review various combinations
of processes and their resulting behaviour.

1.1 First examples

A simple process is a clock that perpetually ticks.

Cl
def= tick.Cl

Names of actions such as tick are in lower case, whereas names of processes
such as Cl have an initial capital letter. A process definition ties a process
name to a process expression. In this case, Cl is attached to tick.Cl, where
both occurrences of Cl name the same process. The defining expression for
Cl invokes a prefix operator . that builds the process a.E from the action
a and the process E.

Behaviour of processes is captured by transitions E a−→ F , that E may
evolve to F by performing or accepting the action a. The behaviour of Cl
is elementary, since it can only perform tick and in so doing becomes Cl
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tick

Cl

FIGURE 1.1. The transition graph for Cl

Ven
def= 2p.Venb + 1p.Venl

Venb
def= big.collectb.Ven

Venl
def= little.collectl.Ven

FIGURE 1.2. A vending machine

again. This is a consequence of the rules for deriving transitions. First is
the axiom for the prefix operator.

R(.) a.E a−→ E

A process a.E performs the action a and becomes E. An instance of this
axiom is the transition tick.Cl tick−→ Cl. The next transition rule refers to
the operator def= , and is presented with the desired conclusion uppermost.

R(def=)
P a−→ F

E a−→ F
P def= E

If the transition E a−→ F is derivable and P def= E, then P a−→ F is also
derivable. Goal-directed transition rules are used because we are interested
in discovering the available transitions of a process. There is a single tran-
sition for the clock, Cl tick−→ Cl. Suppose our goal is to derive a transition
Cl

a−→ E. Because the only applicable rule is R(def=), the goal reduces to the
subgoal tick.Cl a−→ E, and the only possibility for deriving this subgoal
is an application of R(.), in which case a is tick and E is Cl.

The behaviour of Cl is represented graphically in Figure 1.1. Ingredients
of this behaviour graph (known as a “transition system”) are process ex-
pressions and binary transition relations between them. Each vertex is a
process expression, and one of the vertices is the initial vertex Cl. Each
derivable transition of a vertex is depicted. Transition systems abstract
from the derivations of transitions.

An unsophisticated vending machine Ven is defined in Figure 1.2. The
definition of Ven employs the binary choice operator + (which has wider
scope than the prefix operator) from Milner’s CCS, Calculus of Communi-
cating Systems [42, 44]. Initially Ven may accept a 2p or 1p coin, and then
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FIGURE 1.3. The transition graph for Ven

a button big or little may be depressed depending on the coin deposited,
and finally after an item is collected the process reverts to its initial state.
There are two transition rules for +.

R(+)
E1 + E2

a−→ F

E1
a−→ F

E1 + E2
a−→ F

E2
a−→ F

The derivation of the transition Ven
2p−→ Venb is as follows.

Ven
2p−→ Venb

2p.Venb + 1p.Venl
2p−→ Venb

2p.Venb
2p−→ Venb

The goal reduces to the subgoal beneath it as a result of an application of
R(def=), which in turn reduces to the axiom instance via an application of
the first of the R(+) rules. When presenting proofs of transitions, side con-

ditions in the application of a rule, such as R(def=), are omitted. Figure 1.3
pictures the transition system for Ven.

A transition E a−→ F is an assertion derivable from the rules for tran-
sitions. To discover the transitions of E, it suffices to examine its main
combinator and the transitions of its components. There is an analogy
with rules for expression evaluation. To evaluate (3 × 2) + 4 it suffices to
evaluate the components 3×2 and 4, and then sum their values. Such fam-
ilies of rules give rise to a structural operational semantics, as pioneered
by Plotkin [49]. However, whereas the essence of an expression is to be
evaluated, the essence of a process is to act.

Families of processes can be defined using indexing. A simple case is the
set of counters {Cti : i ∈ N} of Figure 1.4. The counter Ct3 can increase to
Ct4 by performing up or decrease to Ct2 by performing down. The derivation
of the transition Ct3

up−→ Ct4 is as follows.
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Ct0
def= up.Ct1 + round.Ct0

Cti+1
def= up.Cti+2 + down.Cti

FIGURE 1.4. A family of counters

Ct0 Ct1 ... Cti ...

down down down down

up up up up

round

FIGURE 1.5. The transition graph for Cti

Ct3
up−→ Ct4

up.Ct4 + down.Ct2
up−→ Ct4

up.Ct4
up−→ Ct4

The rule R(def=) is here applied to the instance Ct3
def= up.Ct4 + down.Ct2.

Each member Cti determines the same transition graph of Figure 1.5 which
contains an infinite number of vertices. This graph is “infinite state” be-
cause the behaviour of Cti may progress through any of the processes Ctj,
in contrast to the finite state graphs of Figures 1.1 and 1.3.

The operator + can be extended to indexed families
∑

{Ei : i ∈ I} where
I is a set of indices. E1 + E2 abbreviates

∑

{Ei : i ∈ {1, 2}}. Indexed sum
may be coupled with indexing of actions. An example is a register storing
numbers, represented as a family {Reg′i : i ∈ N}.

Reg′i
def= readi.Reg′i +

∑

{writej .Reg′j : j ∈ N}

The act of reading the content of the register when i is stored is readi,
whereas writej is the action that updates its value to j. The single tran-
sition rule for

∑

generalises the rules for +.

R(
∑

)
∑

{Ei : i ∈ I} a−→ F

Ej
a−→ F

j ∈ I

Consequently, Reg′i is able to carry out any writej (and thereby changes
to Reg′j) as well as readi (and then remains unchanged). A special case
is when the indexing set I is empty. By the rule R(

∑

), this process has
no transitions, since the subgoal can never be fulfilled. In CCS the nil
process

∑

{Ei : i ∈ ∅} is abbreviated to 0 (and to STOP in Hoare’s CSP,
Communicating Sequential Processes [31]).
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Actions can be viewed as ports or channels, means by which processes
can interact. It is then also important to consider the passage of data
between processes along these channels, or through these ports. In CCS,
input of data at a port named a is represented by the prefix a(x).E, where
a(x) binds free occurrences of x in E. (In CSP a(x) is written a?x.) The
port label a no longer names a single action, instead it represents the set
{a(v) : v ∈ D} where D is the appropriate family of data values. The
transition axiom for this prefix input form is

R(in) a(x).E
a(v)−→ E{v/x} if v ∈ D

where E{v/x} is the process term that results from replacing all free occur-
rences of x in E with v1. Output at a port named a is represented in CCS
by the prefix a(e).E where e is a data expression. The overbar − symbolises
output at the named port. (In CSP a(e) is written a!e.) The transition rule
for output depends on extra machinery for expression evaluation. Assume
that Val(e) is the data value in D (if there is one) to which e evaluates.

R(out) a(e).E
a(v)−→ E if Val(e) = v

The asymmetry between input and output is illustrated by the following
process that copies a value from in and then sends it through out.

Cop
def= in(x).out(x).Cop

Below is a derivation of the transition Cop
in(v)−→ out(v).Cop for v ∈ D.

Cop
in(v)−→ out(v).Cop

in(x).out(x).Cop
in(v)−→ out(v).Cop

The subgoal is an instance of R(in), as (out(x).Cop){v/x} is out(v).Cop2,

and so the goal follows by an application of R(def=). The process out(v).Cop

has only one transition out(v).Cop
out(v)−→ Cop that is an instance of R(out),

since we assume that Val(v) is v. Whenever Cop inputs a value at in, it
immediately disgorges it through out. The size of the transition graph for
Cop depends on the size of the data domain D, and is finite when D is a
finite set.

1The process a(x).E can be viewed as an abbreviation of the process
P
{av .E{v/x} :

v ∈ D}, writing av instead of a(v).
2Cop contains no free variables because in(x) binds x, and so (out(x).Cop){v/x}

equals out(v).(Cop{v/x}) because x is free in out(x), and (Cop{v/x}) is Cop.
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Example 1 Cop1
def= in(x).in(x).out(x).Cop1 is a different copier. It takes

in two data values at in, discarding the first but sending out the second.

Cop1 has initial transition Cop1
in(v)−→ in(x).out(x).Cop1 for v ∈ D.

Input actions and indexing can be mingled, as in the following redescrip-
tion of the family of registers, where both i and x have type N.

Regi
def= read(i).Regi + write(x).Regx

Regi can output the value i at the port read, or instead it can be updated

by being written to at write. Below is the derivation of Reg5
write(3)−→ Reg3.

Reg5
write(3)−→ Reg3

read(5).Reg5 + write(x).Regx
write(3)−→ Reg3

write(x).Regx
write(3)−→ Reg3

The variable x in write(x) binds the free occurrence of x in Regx. An index
can also be presented explicitly as a parameter.

Example 2 The multiple copier Cop′ uses the parameterised subprocess
Cop(n, x), where n ranges over N and x over texts.

Cop′
def= no(n).in(x).Cop(n, x)

Cop(0, x) def= out(x).Cop′

Cop(i + 1, x) def= out(x).Cop(i, x)

The initial transition of Cop′ determines the number of extra copies of

a manuscript, for instance Cop′
no(4)−→ in(x).Cop(4, x). The next transition

settles on the text, in(x).Cop(4, x)
in(v)−→ Cop(4, v). Then before reverting to

the initial state, five copies of v are transmitted through the port out.

Data expressions may involve operations on values, as in the following
example, where x and y range over a space of messages.

App
def= in(x).in(y).out(x∧y).App

App receives two messages m and n on in and transmits their concatenation
m∧n on out. We shall assume different expression types, such as boolean
expressions. An example is that Val(even(i)) = true if i is an even integer
and is false otherwise. This allows us to use conditionals in the definition
of a process as exemplified by S that sieves odd and even numbers.

S
def= in(x).if even(x) then oute(x).S else outo(x).S
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Below are the transition rules for the conditional.

R(if 1)
if b then E1 else E2

a−→ E′

E1
a−→ E′

Val(b) = true

R(if 2)
if b then E1 else E2

a−→ E′

E2
a−→ E′

Val(b) = false

S initially receives a numerical value through the port in. For instance,

S
in(55)−→ if even(55) then oute(55).S else outo(55).S. It then outputs

through oute if the received value is even, or through outo otherwise. In

this example, if even(55) then oute(55).S else outo(55).S
outo(55)−→ S.

Example 3 Consider the following family of processes for i ≥ 1.

T(i) def= if even(i) then out(i).T(i/2) else out(i).T((3i + 1)/2)

So T(5) performs the sequence of transitions

T(5)
out(5)−→ T(8)

out(8)−→ T(4)
out(4)−→ T(2)

and then cycles through the transitions T(2)
out(2)−→ T(1)

out(1)−→ T(2).

Exercises
1. Draw the transition graphs for the following clocks.

(a) Cl1
def= tick.tock.Cl1

(b) Cl2
def= tick.tick.Cl2

(c) Cl3
def= tick.Cl

(d) tick.0

2. Show that there are two derivations of the transition Cl4
tick−→ Cl4

when Cl4
def= tick.Cl4 +tick.Cl4. Draw the transition graph for Cl4.

3. Contrast the behaviour of Cl5
def= tick.Cl5 + tick.0 with that of Cl

by drawing their transition graphs.

4. Define a more rational vending machine than Ven that allows the big
button to be pressed if two 1p coins are entered, and the little button
to be depressed twice after a 2p coin is deposited.
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5. Assume that the space of values consists of two elements, 0 and 1.
Draw transition graphs for the following three copiers Cop, Cop1 and
Cop2 where Cop2

def= in(x).out(x).out(x).Cop2.

6. Draw transition graphs of T(31) and T(17), where T(i) is defined in
Example 3.

7. For any processes E, F and G, show that the transition graphs for
E + F and F + E are isomorphic, and that the transition graph for
(E + F ) + G is isomorphic to that of E + (F + G).

8. From Walker [60]. Define a process Change that describes a change-
making machine with one input port and one output port, that is
capable initially of accepting either a 20p or a 10p coin, and that can
then dispense any sequence of 1p, 2p, 5p and 10p coins, the sum of
whose values is equal to that of the coin accepted, before returning
to its initial state.

1.2 Concurrent interaction

A compelling feature of process theory is modelling of concurrent interac-
tion. A prevalent approach is to appeal to handshake communication as
primitive. At any one time, only two processes may communicate at a port
or along a channel. In CCS, the resultant communication is a completed
internal action. Each incomplete, or observable, action a has a partner a,
its co-action. Moreover, the action a is a, which means that a is also the
co-action of a. The partner of a parameterised action in(v) is in(v). Si-
multaneously performing an action and its co-action produces the internal
action τ , which is a complete action that does not have a partner.

Concurrent composition of E and F is expressed as E |F . Below is the
crucial transition rule for | that conveys communication.

R(| com)
E |F τ−→ E′ |F ′

E a−→ E′ F a−→ F ′

If E can carry out an action and become E′, and F can carry out its co-
action and become F ′ then E |F can perform the completed internal action
τ and become E′ |F ′. Consider a potential user of the copier Cop of the
previous section, who first writes a file before sending it through the port
in.

User
def= write(x).Userx

Userv
def= in(v).User
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As soon as User has written the file v, it becomes the process Userv that
can communicate with Cop at the port in. Rule R(| com) is used in the
following derivation3 of the transition Cop | Userv

τ−→ out(v).Cop | User.

Cop | Userv
τ−→ out(v).Cop | User

Cop
in(v)−→ out(v).Cop

in(x).out(x).Cop
in(v)−→ out(v).Cop

Userv
in(v)−→ User

in(v).User
in(v)−→ User

The goal transition is the resultant communication at in. Through this
communication, the value v is sent from the user to the copier because
Userv performs the output in(v) and Cop performs the input in(v), where
they agree on the value v. Data is thereby passed from one process to
another. When the actions a and a do not involve values, the resulting
communication is a synchronization.

Several users can share the copying resource. Cop | (Userv1 | Userv2) in-
volves two users, but only one at a time is allowed to employ it. So, other
transition rules for | are needed, permitting components to proceed without
communicating.

R(|) E |F a−→ E′ |F
E a−→ E′

E |F a−→ E |F ′

F a−→ F ′

In the first of these rules, the process F does not contribute to the action
a that E performs. Below is a sample derivation.

Cop | (Userv1 | Userv2)
τ−→ out(v1).Cop | (User | Userv2)

Cop
in(v1)−→ out(v1).Cop

in(x).out(x).Cop
in(v1)−→ out(v1).Cop

Userv1 | Userv2
in(v1)−→ User | Userv2

Userv1
in(v1)−→ User

in(v1).User
in(v1)−→ User

The goal transition reflects a communication between Cop and Userv1,
meaning Userv2 is not a contributor. Cop | (Userv1 | Userv2) is not forced
to engage in communication. Instead, it may carry out an input action
in(v), or an output action in(v1) or in(v2).

Cop | (Userv1 | Userv2)
in(v)−→ out(v).Cop | (Userv1 | Userv2)

Cop | (Userv1 | Userv2)
in(v1)−→ Cop | (User | Userv2)

Cop | (Userv1 | Userv2)
in(v2)−→ Cop | (Userv1 | User)

3We assume that | has greater scope than other process operators. The process
out(v).Cop | User is therefore the parallel composition of out(v).Cop and User.
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in

__
in out

___

write

User Cop

FIGURE 1.6. Flow graphs of User and Cop

The second of these transitions is derived using two applications of R(|).

Cop | (Userv1 | Userv2)
in(v1)−→ Cop | (User | Userv2)

Userv1 | Userv2
in(v1)−→ User | Userv2

Userv1
in(v1)−→ User

in(v1).User
in(v1)−→ User

The behaviour of the users sharing the copier is not impaired by the or-
der of parallel subcomponents, or by placement of brackets. Both processes
(Cop | Userv1) | Userv2 and Userv1 | (Cop | Userv2) have the same capa-
bilities as Cop | (Userv1 | Userv2). These three process expressions have
isomorphic transition graphs, and therefore in the sequel we omit brackets
between multiple concurrent processes4.

The parallel operator is expressively powerful. It can be used to describe
infinite state systems without invoking infinite indices or value spaces. A
simple example is the following counter Cnt.

Cnt
def= up.(Cnt | down.0)

Cnt can perform up and become Cnt | down.0 that can perform down, or a
further up and become Cnt | down.0 | down.0, and so on.

Figure 1.6 offers an alternative pictorial representation of the copier Cop
and user User. Such diagrams are called “flow graphs” by Milner [44] (and
should be distinguished from transition graphs). A flow graph summarizes
the potential movement of information flowing into and out of ports, and
also exhibits the ports through which a process is, in principle, willing to
communicate. In the case of User, the incoming arrow to the port labelled
write represents input, whereas the outgoing arrow from in symbolises
output. Figure 1.7 shows the flow graph for Cop | User with the crucial
feature that there is a potential linkage between the output port in of
User and its input in Cop, permitting information to circulate from User
to Cop when communication takes place. However, this port is still available
for other users. Both users in Cop | User | User are able to communicate
at different times with Cop, as illustrated in Figure 1.8

The situation in which a user has private access to a copier is modelled
using an abstraction or encapsulation operator that conceals ports. CCS

4Equivalences between processes is discussed in Chapter 3.
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FIGURE 1.7. Flow graph of Cop | User

in

__

in

__

in out

___
write

write

User

 User

Cop

FIGURE 1.8. Flow graph of Cop | User | User

has a restriction operator \J , where J ranges over families of incomplete
actions (thereby excluding the complete action τ). If K is {in(v) : v ∈ D}
when D contains the values that can flow through in, then the port in
within (Cop | User)\K is inaccessible to other users. The flow graph of
(Cop | User)\K is pictured in Figure 1.9, where the linkage without names
at the ports represents their concealment from other users, so it can be
simplified as in the second diagram of the figure.

The visual effect of \K on the flow graph in Figure 1.9 is justified by the
transition rule for restriction, which is as follows where J is {a : a ∈ J}.

R(\) E\J a−→ F\J
E a−→ F

a 6∈ J ∪ J

The behaviour of E\J is part of that of E, as any action that E\J may carry
out can also be performed by E, but not necessarily the other way round.
For instance, Cop | User is able to perform an in input action, whereas
an attempt to derive an in transition from (Cop | User)\K is precluded

write out

___

User Cop

write
(Cop|User)\K

out

FIGURE 1.9. Flow graph of (Cop | User)\K
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Road
def= car.up.ccross.down.Road

Rail
def= train.green.tcross.red.Rail

Signal
def= green.red.Signal + up.down.Signal

Crossing ≡ (Road | Rail | Signal)\{green, red, up, down}

FIGURE 1.10. A level crossing

because of the side condition on the rule for R(\). The presence of \K
in (Cop | User)\K prevents Cop from ever doing an in transition, except
in the context of a communication with User. Restriction can therefore
be used to enforce communication between parallel components. After the

initial write transition (Cop | User)\K write(v)−→ (Cop | Userv)\K, the next
transition must be a communication.

(Cop | Userv)\K
τ−→ (out(v).Cop | User)\K

Cop | Userv
τ−→ out(v).Cop | User

Cop
in(v)−→ out(v).Cop

in(x).out(x).Cop
in(v)−→ out(v).Cop

Userv
in(v)−→ User

in(v).User
in(v)−→ User

A port a is concealed by restricting all the actions {a(v) : v ∈ D}, and
therefore we shall usually abbreviate such a subset within a restriction to
{a}.

Process descriptions can become quite large, especially when they consist
of multiple components in parallel. We shall therefore employ abbreviations
of process expressions using the relation ≡, where P ≡ F means that P
abbreviates F , which is typically a large expression.

Example 1 The mesh of abstraction and concurrency is further revealed in
the finite state example without data of a level crossing in Figure 1.10 from
Bradfield and the author [10], consisting of three components Road, Rail
and Signal. The actions car and train represent the approach of a car
and a train, up opens the gates for the car, ccross is the car crossing, down
closes the gates, green is the receipt of a green signal by the train, tcross
is the train crossing, and red automatically sets the light red. Unlike most
crossings, it keeps the barriers down except when a car actually approaches
and tries to cross. The flow graphs of the components, and of the overall
system are depicted in Figure 1.11. The transition graph is pictured in
Figure 1.12. Both Road and Rail are simple cyclers that can only perform
a determinate sequence of actions repeatedly.
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FIGURE 1.11. Flow graphs of the crossing and its components

An important arena for process descriptions is provided by modelling
protocols. An example is the process Protocol of Figure 1.13 taken from
Walker [60], which models an extremely simple communications protocol
that allows a message to be lost during transmission. Its flow graph is the
same as that of Cop, and the size of its transition graph depends on the
space of messages. The sender transmits any message it receives at the
port in to the medium. In turn, the medium may transmit the message
to the receiver, or instead the message may be lost, an action modelled as
the silent τ action, in which case the medium sends a timeout signal to
the sender and the message is retransmitted. On receiving a message, the
receiver transmits it at the port out and then sends an acknowledgement
directly to the sender (which we assume can not be lost). Having received
the acknowledgement, the sender may again receive a message at port in.

Although the flow graphs for Protocol and Cop are the same, their levels
of detail are very different. The process Cop is a one-place buffer that takes
in a value and later expels it. Similarly, the protocol takes in a message
and later may output it. The transition graph associated with this process
when there is just one message is pictured in Figure 1.14. It turns out that
Protocol and Cop are observationally equivalent, as defined in Chapter 3.
As process descriptions, however, they are very different. Cop is close to a
specification, as its desired behaviour is given merely in terms of what it
does. In contrast, Protocol is closer to an implementation, because it is
defined in terms of how it is built from simpler components.
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τ
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Crossing

train

car

10 τ

K = {green, red, up, down}

E1 ≡ (up.ccross.down.Road | Rail | Signal)\K
E2 ≡ (Road | green.tcross.red.Rail | Signal)\K
E3 ≡ (up.ccross.down.Road | green.tcross.red.Rail | Signal)\K
E4 ≡ (ccross.down.Road | Rail | down.Signal)\K
E5 ≡ (Road | tcross.red.Rail | red.Signal)\K
E6 ≡ (ccross.down.Road | green.tcross.red.Rail | down.Signal)\K
E7 ≡ (up.ccross.down.Road | tcross.red.Rail | red.Signal)\K
E8 ≡ (down.Road | Rail | down.Signal)\K
E9 ≡ (Road | red.Rail | red.Signal)\K
E10 ≡ (down.Road | green.tcross.red.Rail | down.Signal)\K
E11 ≡ (up.ccross.down.Road | red.Rail | red.Signal)\K

FIGURE 1.12. Transition graph of Crossing

Sender
def= in(x).sm(x).Send1(x)

Send1(x) def= ms.sm(x).Send1(x) + ok.Sender

Medium
def= sm(y).Med1(y)

Med1(y) def= mr(y).Medium + τ.ms.Medium

Receiver
def= mr(x).out(x).ok.Receiver

Protocol ≡ (Sender | Medium | Receiver)\{sm, ms, mr, ok}

FIGURE 1.13. A simple protocol
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in(m)

τ

τ

τ

τ

τ

Protocol

(sm(m).Send1(m)|Medium|Receiver)\J
__

out(m)

(Send1(m)|Medium|ok.Receiver)\J
__

(Send1(m)|ms.Medium|Receiver)\J
__

___

(Send1(m)|Med1(m)|Receiver)\J

(Send1(m)|Medium|out(m).ok.Receiver)\J

J = {sm, ms, mr, ok}

FIGURE 1.14. Protocol transition graph when there is one message m.

Example 2 An example of an infinite state system from Bradfield and the
author [10] is the slot machine SMn defined in Figure 1.15. Its flow graph is
also depicted there. A coin is input (the action slot) and then, after some
silent activity, either a loss or a winning sum of money is output. The system
consists of three components: IO, which handles the taking and paying out
of money; Bn, a bank holding n pounds; and D, the wheel-spinning decision
component.

Exercises
1. Give a derivation of the following transition.

Cop | (Userv1 | Userv2)
τ−→ out(v2).Cop | (Userv1 | User)

2. Show that the following three processes

(a) (Cop | Userv1) | Userv2
(b) Userv1 | (Cop | Userv2)
(c) Cop | (Userv1 | Userv2)

have isomorphic transition graphs (and flow graphs).

3. Sem
def= get.put.Sem is a semaphore. Draw the transition graph for

Sem | Sem | Sem | Sem.

4. How does the transition graph for Cnt differ from that for the counter
Ct0 of Figure 1.4?
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IO
def= slot.bank.(lost.loss.IO + release(y).win(y).IO)

Bn
def= bank.max(n + 1).left(y).By

D
def= max(z).(lost.left(z).D +

∑

{release(y).left(z − y).D : 1 ≤ y ≤ z})

SMn ≡ (IO | Bn | D)\{bank, lost, max, left, release}

slot

loss

____

win

___

SM
n

FIGURE 1.15. A slot machine

5. Draw the transition graph for Bag
def= in(x).(out(x).0 | Bag) when

the space of values contains just two elements, 0 and 1.

6. Let L1 be the set of actions {1p, little} and let L2 be {1p, little, 2p}.
Also let Use1

def= 1p.little.Use1. Draw flow graphs and transition
graphs for the processes

(a) Ven | Use1
(b) Ven | (Use1 | Use1)
(c) (Ven | Use1)\Li

(d) (Ven | Use1)\Li | Use1
(e) (Ven | Use1 | Use1)\Li

when i = 1 and i = 2.

7. Let G(E) be the transition graph for E. Define prefixing (.), +, |
and \J operators directly on transition graphs so that each of the
following pairs is isomorphic.

(a) a.G(E) and G(a.E)
(b) G(E + F ) and G(E) + G(F )
(c) G(E | F ) and G(E) | G(F )
(d) G(E)\J and G(E\J)

8. Consider the definition of the following process from Hennessy and
Ingolfsdottir [27].

Fac
def= in1(y).in2(z).if y = 0 then out(z).0

else (in1(y − 1).in2(z ∗ y).0 | Fac)

Draw the transition graph of (in1(3).in2(1).0 | Fac)\{in1, in2}.
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9. Draw the transition graph for Road | Rail | Signal, and compare it
with that for Crossing.

10. Draw flow and transition graphs for the components of Protocol.

11. Refine the description of Protocol so that acknowledgements may
also be lost.

1.3 Observable transitions

Actions a on the transition relations a−→ between processes can be extended
to finite length sequences w, which are also called “traces.” The extended
transition E w−→ F states that E may perform the trace w and become F .
There are two transition rules for traces, where ε is the empty sequence of
actions.

R(tr) E ε−→ E
E aw−→ F

E a−→ E′ E′ w−→ F

First is the axiom that any process may carry out the empty sequence
and remain unchanged. The second rule allows traces to be extended. If
E a−→ E′ and E′ can perform the trace w and become F then E aw−→ F .
No distinction is made between carrying out the action a and carrying out
the trace a (understood as an action sequence of length one). Below is the

derivation of the extended transition Venb
big collectb−→ Ven when Venb is part

of the vending machine of Section 1.1.

Venb
big collectb−→ Ven

Venb
big−→ collectb.Ven

big.collectb.Ven
big−→ collectb.Ven

collectb.Ven
collectb−→ Ven

Internal τ actions have a different status from incomplete actions. An
incomplete action is “observable” because it is susceptible of interaction in
a parallel context. Suppose that E may at some time perform the action ok,
and that Resource is a resource. In the context (E | ok.Resource)\{ok}
access to Resource is only triggered with an execution of ok by E. Ob-
servation of ok is the same as the release of Resource. The silent action τ
cannot be observed in this way. Consequently, an important abstraction of
process behaviour derives from silent activity.

Consider the following copier C and the user U.

C
def= in(x).out(x).ok.C

U
def= write(x).in(x).ok.U
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U writes a file before sending it through in and then waits for an acknowl-
edgement. (C | U)\{in, ok} has similar behaviour to Ucop.

Ucop
def= write(x).out(x).Ucop

The only difference in their abilities is internal activity. Both are initially
able only to carry out a write action

Ucop
write(v)−→ out(v).Ucop

(C | U)\{in, ok} write(v)−→ (C | in(v).ok.U)\{in, ok}.

Process out(v).Ucop outputs immediately, whereas the other process must
first perform a communication before it outputs, and then τ again before a
second write can happen. By abstracting from silent behaviour, this differ-
ence disappears. Outwardly, both processes repeatedly write and output.

A trace w is a sequence of actions. The trace w � J is the subsequence
of w when actions that do not belong to J are erased.

ε � J = ε

aw � J =
{

a(w � J) if a ∈ J
w � J otherwise

Below are three simple examples.

(train τ tcross τ) � {tcross} = tcross
(τ ccross τ) � {tcross} = ε
(write(v) τ out(v) τ) � {write, out} = write(v) out(v)

Associated with any trace w is the observable trace w � O, where O is a
universal set of observable actions containing at least all actions mentioned
in this work apart from τ . The effect of � O on w is to erase all occurrences
of the silent action τ , as illustrated by the following examples.

(in(m) τ τ out(m) τ) � O = in(m) out(m)
(in(m) τ τ τ τ) � O = in(m)
(τ τ τ τ τ τ) � O = ε

To capture observable behaviour, another family of transition relations
between processes is introduced. E u=⇒ F expresses that E may carry out
the observable trace u and become F . The transition rule for observable
traces is as follows.

R(Tr)
E u=⇒ F

E w−→ F
u = w � O

An example is Protocol
in(m) out(m)

=⇒ Protocol, whose derivation utilises

the extended transition Protocol
in(m) τ τ out(m) τ−→ Protocol.
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Observable traces can also be built from their component observable ac-

tions. The extended transition Crossing
train tcross=⇒ Crossing is the result

of gluing together Crossing
train=⇒ E and E tcross=⇒ Crossing when the in-

termediate state E is E2 or E5 of Figure 1.12. Observable behaviour is
constructed from transitions E ε=⇒ F or E a=⇒ F when a ∈ O, whose rules
are as follows.

R( ε=⇒) E ε=⇒ E
E ε=⇒ F

E τ−→ E′ E′ ε=⇒ F

R( a=⇒)
E a=⇒ F

E ε=⇒ E′ E′ a−→ F ′ F ′ ε=⇒ F

E ε=⇒ F if E can silently evolve to F and E a=⇒ F if E can silently evolve
to a process that carries out a and then silently becomes F .

Example 1 The derivation of Protocol
in(m)
=⇒ F3, where F3 abbreviates

(Send1(m) | Medium | out(m).ok.Receiver)\{sm, ms, mr, ok}, uses the fol-
lowing two intermediate states (see Figure 1.14).

F1 ≡ (sm(m).Send1(m) | Medium | Receiver)\{sm, ms, mr, ok}
F2 ≡ (Send1(m) | Med1(m) | Receiver)\{sm, ms, mr, ok}

Below is part of the derivation.

Protocol
in(m)
=⇒ F3

Protocol
ε=⇒ Protocol Protocol

in(m)−→ F1 F1
ε=⇒ F3

Part of the derivation of F1
ε=⇒ F3 is as follows.

F1
ε=⇒ F3

F1
τ−→ F2 F2

ε=⇒ F3

F2
τ−→ F3 F3

ε=⇒ F3

Observable behaviour of a process can also be visually encapsulated as
a transition graph. As in Section 1.1, ingredients of this graph are process
terms related by transitions. Each edge has the form ε=⇒ or a=⇒ when
a ∈ O. Assuming a value space with just one element v, the observable
transition graphs for (C | U)\{in, ok} and Ucop are pictured in Figure 1.16
(where thick arrows are used instead of =⇒).
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1: (C|U)\{in,ok} 2: (C|in(v).ok.U)\{in,ok}
__

\{in,ok} 3: (out(v).ok.C|ok.U)\{in,ok}4: (ok.C|ok.U)
__

Ucop out(v).Ucop
___

out(v)
___

out(v)
___

out(v)
___

out(v)
___

write(v)

write(v)

write(v)

write(v)

ε ε

ε

ε ε

ε

ε

ε

out(v)
___

write(v)

FIGURE 1.16. Observable transition graphs for (C | U)\{in, ok} and Ucop
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There are two behaviour graphs associated with any process. Although
both graphs contain the same vertices, they differ in their labelled edges.
Observable graphs are more complex, since they contain more transitions.
However, this abundance of transitions may result in redundant vertices.
Figure 1.16 exemplifies this condition in the case of (C | U)\{in, ok}. The
states labelled 1 and 4 have identical capabilities, as do the states labelled 2
and 3. When minimized with respect to observable equivalences, as defined
in Chapter 3, these graphs may be dramatically simplified as their vertices
are fused.

Exercises
1. Derive the extended transition SMn

w−→ SMn+1 when w is the following
trace slot τ τ τ τ loss and SMn is the slot machine.

2. Provide a full derivation of Protocol s−→ Protocol when s is the
trace in(m) τ τ out(m) τ .

3. List the members of the following sets:

{E : Crossing train tcross=⇒ E}
{E : Protocol

in(m)
=⇒ E}

4. Show that E a=⇒ F is derivable via the rules R(tr) and R(Tr) iff it is
derivable using the rules R( a=⇒) and R( ε=⇒).

5. Draw the observable transition graphs for the processes: Cl, Ven and
Crossing.

6. Although observable traces abstract from silent activity, this does
not mean that internal actions can not contribute to differences in
observable capability. Let Ven′ be a vending machine very similar to
Ven of Figure 1.2, except that the initial 2p action is prefaced by the
silent action, Ven′ def= τ.2p.Venb + 1p.Venl

(a) Show that Ven and Ven′ have the same observable traces.

(b) Let Use1 be the user Use1
def= 1p.little.Use1, who is only in-

terested in inserting the smaller coin. Show that the process
(Ven′ | Use1)\{1p, 2p, little} may deadlock before an observ-
able action is carried out unlike (Ven | Use1)\{1p, 2p, little}.

(c) Draw both kinds of transition graphs for each of the processes
in part (b).

7. Assuming just one datum value, draw the observable graphs for pro-
cesses (Cop | User)\{in} and Protocol. What states of these graphs
can be fused together?
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8. Let G(E) be the transition graph for E, and let Go(E) be its observ-
able transition graph. Define the graph transformation o that maps
G(E) into Go(E).

9. A process is said to be “divergent” if it can perform the τ action
forever.

(a) Draw both kinds of transition graph for the following pair of

processes, τ.0 and Div′
def= τ.Div′ + τ.0.

(b) Do you think that the processes Protocol and Cop have the
same observable behaviour? Give reasons for and against.

1.4 Renaming and linking

Cop, User and Ucop of previous sections are essentially one-place buffers,
taking in a value and later expelling it. Assume that B is the following
canonical buffer.

B
def= i(x).o(x).B

For instance, Cop is the process B when port i is in and port o is out.
Relabelling of ports can be made explicit by introducing an operator which
renames actions.

The crux of renaming is a function mapping actions into actions. To
ensure pleasant properties, a renaming function f is subject to a few re-
strictions. First, it should respect complements. For any observable a, the
actions f(a) and f(a) are co-actions, that is f(a) = f(a). Second, it should
conserve the silent action, f(τ) = τ . Associated with any function f obeying
these conditions is the renaming operator [f ], which, when applied to pro-
cess E, is written as E[f ]; this is the process E whose actions are relabelled
according to f .

A renaming function f can be abbreviated to its essential part. If each ai

is a distinct observable action, then b1/a1, . . . , bn/an represents the func-
tion f that renames ai to bi (and ai to bi), and leaves any other action c
unchanged. For instance, Cop abbreviates the process B[in/i, out/o]: here
we maintain the convention that in stands for the family {in(v) : v ∈ D}
and i for {i(v) : v ∈ D}, so in/i symbolises the function that also pre-
serves values by mapping i(v) to in(v) for each v. The transition rule for
renaming is set forth below.

R([f ])
E[f ] a−→ F [f ]

E b−→ F
a = f(b)

This rule is used in derivations of the following pair of transitions.



1.4 Renaming and linking xxxi

i o i o

o

B B B...

...

_

21
oi

1
o
_ _

BB

_
i o

_

o
n-1

o
_

B
1 2 n

FIGURE 1.17. Flow graph of n instances of B, and B1 | . . . | Bn.

B[in/i, out/o]
in(v)−→ (o(v).B)[in/i, out/o]

out(v)−→ B[in/i, out/o]

Below is the derivation of the initial transition.

B[in/i, out/o]
in(v)−→ (o(v).B)[in/i, out/o]

B
i(v)−→ o(v).B

i(x).o(x).B
i(v)−→ o(v).B

A virtue of process modelling is that it allows building systems from
simpler components. Consider how to model an n-place buffer when n > 1,
following Milner [44], by linking together n instances of B in parallel. The
flow graph of n copies of B is pictured in Figure 1.17. For this to become
an n-place buffer we need to “link,” and then internalise, the contiguous o
and i ports. Renaming permits linking, as the following variants of B show.

B1 ≡ B[o1/o]
Bj+1 ≡ B[oj/i, oj+1/o] 1 ≤ j < n− 1
Bn ≡ B[on−1/i]

The flow graph of B1 | . . . | Bn is also shown in Figure 1.17, and contains
the intended links. The n-place buffer is the result of internalizing these
contiguous links, (B1 | . . . | Bn)\{o1, . . . , on−1}.

Part of the behaviour of a two-place buffer is illustrated by the following
cycle.

(B[o1/o] | B[o1/i])\{o1}
i(v)−→ ((o(v).B)[o1/o] | B[o1/i])\{o1}

↓ τ

((o(w).B)[o1/o] | (o(v).B)[o1/i])\{o1}
i(w)←− (B[o1/o] | (o(v).B)[o1/i])\{o1}

↓ o(v)
((o(w).B)[o1/o] | B[o1/i])\{o1}

τ−→ (B[o1/o] | (o(w).B)[o1/i])\{o1}
↓ o(w)

(B[o1/o] | B[o1/i])\{o1}

Below is the derivation of the second transition.
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Cy’

a

c

b

d

FIGURE 1.18. The flow graph of Cy′

((o(v).B)[o1/o] | B[o1/i])\{o1}
τ−→ (B[o1/o] | (o(v).B)[o1/i])\{o1}

(o(v).B)[o1/o] | B[o1/i]
τ−→ B[o1/o] | (o(v).B)[o1/i]

(o(v).B)[o1/o]
o1(v)−→ B[o1/o]

o(v).B
o(v)−→ B

B[o1/i]
o1(v)−→ (o(v).B)[o1/i]

B
i(v)−→ o(v).B

i(x).o(x).B
i(v)−→ o(v).B

A more involved example from Milner [44] refers to the construction of
a scheduler from small cycling components. Assume n tasks when n > 1,
and that action ai initiates the ith task, whereas bi signals its completion.
The scheduler plans the order of task initiation, ensuring that the sequence
of actions a1 . . . an is carried out cyclically starting with a1. The tasks may
terminate in any order, but a task can not be restarted until its previous
operation has finished. So, the scheduler must guarantee that the actions
ai and bi happen alternately for each i.

Let Cy′ be a cycler of length four, Cy′ def= a.c.b.d.Cy′, whose flow graph
is illustrated in Figure 1.18. In this case, the flow graph is very close to
its transition graph, so we have circled the a label to indicate that it is
initially active. As soon as a happens, control passes to the active action c.
The clockwise movement of activity around this flowgraph is its transition
graph. A first attempt at building the required scheduler is as a ring of n
cyclers, where the a action is task initiation, the b action is task termination,
and the other actions c and d are used for synchronization.

Cy′1 ≡ Cy′[a1/a, c1/c, b1/b, cn/d]
Cy′i ≡ (d.Cy′)[ai/a, ci/c, bi/b, ci−1/d] 1 < i ≤ n

Cy′1 carries out the cycle Cy′1
a1 c1 b1 cn−→ Cy′1 and Cy′i, for i > 1 carries out the

different cycle Cy′i
ci−1 ai ci bi−→ Cy′i.

The flow graph of the process Cy′1 | Cy′2 | Cy′3 | Cy′4 with initial active
transitions marked is pictured in Figure 1.19. Next, the ci actions are inter-
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FIGURE 1.19. Flow graph of Cy′1 | Cy
′
2 | Cy
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′
4

nalised. Assume that Sched′4 ≡ (Cy′1 | Cy′2 | Cy′3 | Cy′4)\{c1, . . . , c4}. Imagine
that the ci actions are concealed in Figure 1.19, and notice then how the
tasks must be initiated cyclically. For example, a3 can only happen once
a1, and then a2, have both happened. Moreover, no task can be reinitiated
until its previous execution has terminated. For example, a3 can not re-
cur until b3 has happened. However, Sched′4 does not permit all possible
acceptable behaviour. Put simply, action b4 cannot happen before b1 be-
cause of the synchronization between c4 and c4, meaning task four cannot
terminate before the initial task.

Milner’s solution in [44] to this problem is to redefine the cycler

Cy
def= a.c.(b.d.Cy + d.b.Cy)

and to use the same renaming functions. Let Cyi for 1 < i ≤ n be the
process

(d.Cy)[ai/a, ci/c, bi/b, ci−1/d]

and let Cy1 be Cy[a1/a, c1/c, b1/b, cn/d]. The required scheduler is Schedn,
the process (Cy1 | . . . | Cyn)\{c1, . . . , cn}.

Exercises
1. Redefine Road and Rail from Section 1.2 as abbreviations of Cy′ plus

renaming.
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2. Assuming that the space of values consists of one element, draw both
kinds of transition graph for the three-place buffer

(B1 | B2 | B3)\{o1, o2}.

3. What extra condition on a renaming function f is necessary to en-
sure that the transition graphs of (E | F )[f ] and E[f ] | F [f ] be
isomorphic? Do either of the buffer and scheduler examples fulfil this
condition?

4. (a) Draw both kinds of transition graph for the processes Sched4

and Sched′4.

(b) Prove that Sched′4 permits all, and only the acceptable, be-
haviour of a scheduler (as described earlier).

5. From Milner [44]. Construct a sorting machine from simple compo-
nents for each n ≥ 1 capable of sorting n-length sequences of natural
numbers greater than 0. It accepts exactly n numbers, one by one
at in, then delivers them up one by one in descending order at out,
terminated by a 0. Thereafter, it returns to its initial state.

1.5 More combinations of processes

In previous sections we have emphasised the process combinators of CCS.
There is a variety of process calculi dedicated to precise modelling of sys-
tems. Besides CCS and CSP, there is ACP, due to Bergstra and Klop [5, 3],
Hennessy’s EPL [26], MEIJE defined by Austry, Boudol and Simone [2, 51],
Milner’s SCCS [43], and Winskel’s general process algebra [62]. Although
the behavioural meaning of all the operators of these calculi can be pre-
sented using inference rules, their conception reflects different concerns.
ACP is primarily algebraic, highlighting equations5. CSP was devised with
a distinguished model in mind, the failures model6, and MEIJE was intro-
duced as a very expressive calculus, initiating general results about families
of transition rules that can be used to define process operators; see Groote
and Vaandrager [25]. The general process algebra in [62] has roots in cat-
egory theory. Moreover, users of process notation can introduce their own
operators according to the application at hand.

Numerous parallel operators are proposed within the calculi mentioned
above. Their transition rules are of two kinds. First, where × is parallel, is
a synchronization rule.

5See Section 3.6.
6See Section 2.2 for the notion of failure.


