
Communication and Concurrency

Exercise Sheet 2

The deadline for this coursework is 4.00pm on Monday 18th November. Please
submit your solutions to the ITO. The answers should be submitted to the ITO
where the answer to Q3 should be a text file you have run on the CWB.

[20 marks]1. Consider the following process definitions.

A0
def
= a.A1 + τ.A0 B0

def
= a.B0 + τ.(B0 +B1)

A1
def
= b.A1 + τ.A2 B1

def
= b.B2 + τ.B1

A2
def
= τ.A1 + b.A2 B2

def
= a.B0 + τ.(B2 +B1)

C0
def
= a.C0 + τ.C1 D0

def
= a.D0 + τ.D1

C1
def
= b.C1 + a.C0 D1

def
= b.D1 + τ.D2

D2
def
= a.D0 + τ.D1

(a) Draw the transition graphs of the processes (with respect to ‘thin” transitions
a−→).

(b) Which of the (different) pairs of processes A0, B0, C0 and D0 are weakly
bisimulation equivalent? Construct a weak bisimulation which contains the pro-
cesses and prove that it is a weak bisimulation when equivalent and provide an
explanation when not equivalent.

(c) Design a process E0 such that

(A0 | E0) ∼ (B0 | E0) ∼ (C0 | E0) ∼ (D0 | E0).

[10 marks]2. Pedestrian crossings are designed to keep the traffic stopped for as long as it takes
the pedestrian to cross, rather than just for a fixed time. Such crossings work
by having a sonar sensor which repeatedly ‘pings’ the crossing space to detect
objects in it.

Consider a well-behaved pedestrian using such a crossing, who may be modelled
as follows:

GoodPedestrian
def
= req.AwaitingSignal + noping.GoodPedestrian

AwaitingSignal
def
= green.InCrossing + noping.AwaitingSignal

InCrossing
def
= noping.Safe + ping.InCrossing + red.Litigant

Safe
def
= noping.Safe + red.0

Litigant
def
= sue.0

In this model req is the pedestrian’s request to cross; green (red) is the pedes-
trian observing the green man (red man); the action ping models the observation

1

by the sensor that the pedestrian is in the crossing (the sonar ‘ping’ is reflected
back to the sonar), and noping models the observation by the sensor that the
pedestrian is not in the crossing (the sonar ‘ping’ is not reflected); and the action
sue indicates that the pedestrian is going to sue you for mental distress, as the
red man appeared while they were still on the crossing.

(a) Write a CCS definition of a Controller process which responds to the pedes-
trian’s request, and the sonar pings, and controls the lights to achieve the infor-
mal specification at the start of the question. (You may assume that only one
pedestrian at a time is interacting with the crossing.)

(b) Consider the process System ≡ (GoodPedestrian | Controller)\L , where
L is all actions except sue. If you have correctly implemented the controller, it
should be impossible for the pedestrian to sue you, and hence you should have

System ≈ 0.

Prove this.

[20 marks]3. Your answer to this question should be in a text file that you have checked with
the CWB. You are given a chain of five Christmas lights connected by a cable:

1−−− 2−−− 3−−− 4−−− 5

Each light has a small programmable controller which can send a signal to
the light, making it flash. The controller can also send signals to its neigh-
bour controllers on its right and on its left. The exercise consists of program-
ming the controllers in such a way that the lights flash in the following order:
2, 5, 3, 1, 4, 2, 5, 3, 1, 4,

We now translate this informal specification into a more formal one. You are
requested to design a process

Light ≡ (Controller1 | . . . | Controller5)\L

satisfying the following properties:

0. Light can only execute the actions flash1, . . . , flash5, and τ .

1. For i = 1, . . . , 5, Controlleri can execute an action flashi, but none of
the actions flashj for j 6= i.

2. Controller1 can only communicate with Controller2.

3. For i = 2, 3, 4, Controlleri can only communicate with Controlleri−1 and
Controlleri+1.

4. Controller5 can only communicate with Controller4.

2

5. Light is weakly bisimilar to the process

Flash
def
= flash2.flash5.flash3.flash1.flash4.Flash

The Workbench command sort P yields the set of actions appearing in the syn-
tactic description of the process P. The conditions 0-4 above can be rephrased in
terms of sort. For instance, properties 1 and 2 are rephrased as follows:

1. For i = 1, . . . , 5, the result of the command sort Controlleri contains the
action flashi, but none of the actions flashj for j 6= i.

2. If i 6= 2, then the commands sort Controller1 and sort Controlleri
must yield disjoint sets of action names.

The Workbench command eq(P, Q) checks if the processes P and Q are weakly
bisimilar. So property 5 can be rephrased as follows:

5. The result of eq(Light, Flash) must be true.

3

