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A third candidate: bisimulation equivalence

I A binary relation B between processes is a bisimulation
provided that, whenever (E ,F ) ∈ B and a ∈ A,

I if E
a−→ E ′ then F

a−→ F ′ for some F ′ such that (E ′,F ′) ∈ B
and

I if F
a−→ F ′ then E

a−→ E ′ for some E ′ such that (E ′,F ′) ∈ B

I E and F are bisimulation equivalent (or bisimilar) if there is a
bisimulation relation B such that (E ,F ) ∈ B.

I We write E ∼ F if E and F are bisimilar
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Examples

I Cl
def
= tick.Cl Cl2

def
= tick.tick.Cl2

I B1 = {(Cl, Cl2)} is not a bisimulation

I B2 = {(Cl, Cl2), (Cl, tick.Cl2)} is a bisimulation.

I

Ven1
def
= 1p.1p.(tea.Ven1 + coffee.Ven1)

Ven2
def
= 1p.(1p.tea.Ven2 + 1p.coffee.Ven2)

I Ven1 not bisimilar to Ven2
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Another example

I

Sem
def
= get.Sem′

Sem′
def
= put.Sem

Sem20
def
= get.Sem21

Sem21
def
= get.Sem22 + put.Sem20

Sem22
def
= put.Sem21

I Show Sem20 ∼ Sem | Sem
I The following relation is a bisimulation

B = { (Sem20, Sem | Sem),
(Sem21, Sem′ | Sem),
(Sem21, Sem | Sem′),
(Sem22, Sem′ | Sem′) }
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Game interpretation

Board: Transition systems of E and F .
Material: Two (identical) pebbles initially on the states E and F .
Players: R (refuter) and V (verifier),

R and V take turns, R moves first.
R-move: Choose any of the two pebbles

Move pebble across any transition
V -move: Choose the other pebble

choose a transition having the same label
move pebble across it

R wins if: V cannot reply to his last move.
V wins if: R cannot move or

the game goes on forever.
(i.e., a draw counts as a win for V ).

Theorem: R can force a win iff E and F are not bisimilar.
V can force a win iff E and F are bisimilar.



Which of the following are bisimilar?

Y/N

a.0 a.a.0

a.0 a.0 + a.0

a.0 a.0 | a.0

a.a.0 a.0 | a.0

a.b.0 a.0 | b.0

a.b.0 + b.a.0 a.0 | b.0

a.a.0 + a.a.0 a.0 | a.0

a.a.0 + a.a.0 + τ.0 a.0 | a.0

τ.0 (a.0 | a.0)\a



Which of the following are bisimilar?

Y/N

a.0 a.a.0 N

a.0 a.0 + a.0 Y

a.0 a.0 | a.0 N

a.a.0 a.0 | a.0 Y

a.b.0 a.0 | b.0 N

a.b.0 + b.a.0 a.0 | b.0 Y

a.a.0 + a.a.0 a.0 | a.0 N

a.a.0 + a.a.0 + τ.0 a.0 | a.0 Y

τ.0 (a.0 | a.0)\a Y



Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties expressible in a nice modal or temporal logic

5. It should abstract from silent actions.

We deal first with conditions 1− 4
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Bisimilarity is an equivalence relation

I Theorem : E ∼ E

I Theorem: if E ∼ F then F ∼ E .

I Theorem : if E ∼ F and F ∼ G , then E ∼ G .

Proof: Since E ∼ F , (E ,F ) ∈ B1 for some bisimulation B1.
Since F ∼ G , (F ,G ) ∈ B2 for some bisimulation B2. So
(E ,G ) ∈ B1 ◦ B2. We show that B1 ◦ B2 is a bisimulation.
Let (H1,H2) ∈ B1 ◦ B2 and H1

a−→ H ′1. We find H ′2 such that

H2
a−→ H ′2 and (H ′1,H

′
2) ∈ B1 ◦ B2. Since (H1,H2) ∈ B1 ◦ B2,

there is H such that (H1,H) ∈ B1 and (H,H2) ∈ B2. Since
B1 is bisimulation, there is H ′ such that H

a−→ H ′ and
(H ′1,H

′) ∈ B1. Since B2 is bisimulation, there is H ′2 such that

H2
a−→ H ′2 and (H ′,H ′2) ∈ B2. Since (H ′1,H

′) ∈ B1 and
(H ′,H ′2) ∈ B2, we have (H ′1,H

′
2) ∈ B1 ◦ B2.
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Bisimilarity is a congruence

Proposition: If E ∼ F , then for any process G , for any set of
actions K , for any action a and for any renaming function f ,

1. a.E ∼ a.F

2. E + G ∼ F + G

3. E | G ∼ F | G
4. E [f ] ∼ F [f ]

5. E\K ∼ F\K
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Proof

Assume E ∼ F . So there is a bisimulation C with (E ,F ) ∈ C

1. We show that for an a, a.E ∼ a.F
Let B = {(a.E , a.F )} ∪ C : clearly, B is a bisimulation

2. We show that for any G , E + G ∼ F + G
Let B = {E + G ,F + G} ∪ C ∪ I where I is the identity
relation: clearly B is a bisimulation

3. See next slide

4. We show that for any f , E [f ] ∼ F [f ].
Let B = {(G [f ],H[f ]) : (G ,H) ∈ C}: clearly, B is a
bisimulation

5. We show that for any K , E\K ∼ F\K .
Let B = {(G\K ,H\K ) : (G ,H) ∈ C}: clearly, B is a
bisimulation



Proof of case 3: if E ∼ F then E | G ∼ F | G

We show B = {(E | G ,F | G ) : E ∼ F} is a bisimulation.

Assume that ((E | G ), (F | G )) ∈ B and E | G a−→ E ′ | G ′

I E
a−→ E ′ and G = G ′. Because E ∼ F , we know that

F
a−→ F ′ and E ′ ∼ F ′ for some F ′. Therefore

F | G a−→ F ′ | G , and so ((E ′ | G ), (F ′ | G )) ∈ B.

I G
a−→ G ′ and E ′ = E . So F | G a−→ F | G ′, and by definition

((E | G ′), (F | G ′)) ∈ B.

I a = τ and E
b−→ E ′ and G

b−→ G ′. F
b−→ F ′ for some F ′

such that E ′ ∼ F ′, so F | G τ−→ F ′ | G ′, and therefore
((E ′ | G ′), (F ′ | G ′)) ∈ B.

Symmetrically for a transition F | G a−→ F ′ | G ′.
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Bisimilarity and Hennessy-Milner Logic I

I Let E ≡HM F if E and F satisfy exactly the same formulas of
HM-Logic.

I Theorem: If E ∼ F then E ≡HM F .

I Proof: By induction on modal formulas Φ.
For any G and H, if G ∼ H, then G |= Φ iff H |= Φ.

I Basis: Φ = tt or Φ = ff. Clear.

I Step: We consider only the case Φ = [K ]Ψ. By symmetry, it
suffices to show that G |= [K ]Ψ implies H |= [K ]Ψ.
Assume G |= [K ]Ψ. For any G ′ such that G

a−→ G ′ and
a ∈ K , it follows that G ′ |= Ψ.
Let H

a−→ H ′ (with a ∈ K ). Since G ∼ H, there is a G ′ such
that G

a−→ G ′ and G ′ ∼ H ′. By the induction hypothesis
H ′ |= Ψ, and therefore H |= Φ.
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Bisimilarity and Hennessy-Milner Logic II

I E is immediately image-finite if, for each a ∈ A, the set
{F : E

a−→ F} is finite.

I E is image-finite if all processes reachable from it are
immediately image-finite.
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Bisimilarity and Hennessy-Milner Logic III

I Theorem: If E , F image-finite and E ≡HM F , then E ∼ F .

I Proof: the following relation is a bisimulation.
{(E ,F ) : E ≡HM F and E ,F are image-finite}

I Assume G ≡HM H and G
a−→ G ′

Need to show H
a−→ Hi and G ′ ≡HM Hi

I Because G |= 〈a〉tt and G ≡HM H, H |= 〈a〉tt
So {H ′ : H

a−→ H ′} = {H1, . . . ,Hn} is non-empty and finite
by image-finiteness.

I If G ′ 6≡HM Hi for each i : 1 ≤ i ≤ n, there are formulas
Φ1, . . . ,Φn such that G ′ |= Φi and Hi 6|= Φi .
(Here we use the fact that M is closed under complement.)

I Let Ψ = Φ1 ∧ . . . ∧ Φn.
G |= 〈a〉Ψ but H 6|= 〈a〉Ψ because each Hi fails to have
property Ψ. Contradicts G ≡HM H.

I Case H
a−→ H ′ is symmetric.
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Bisimilarity and CTL−

I Let E ≡CTL F if E and F satisfy exactly the same formulas of
CTL−-Logic.

I Theorem: If E ∼ F then E ≡CTL F .

I Proof: By induction on formulas Φ.
For any G and H, if G ∼ H, then G |= Φ iff H |= Φ.

I Theorem: If E , F image-finite and E ≡CTL F , then E ∼ F .

I Proof: Because CTL− contains modal logic.
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