Communication and Concurrency Lectures 8 & 9

Colin Stirling (cps)

School of Informatics

14th October 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A binary relation B between processes is a bisimulation provided that, whenever (E, F) ∈ B and a ∈ A,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A binary relation B between processes is a bisimulation provided that, whenever (E, F) ∈ B and a ∈ A,
- if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $(E', F') \in B$ and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A binary relation B between processes is a bisimulation provided that, whenever (E, F) ∈ B and a ∈ A,
- if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $(E', F') \in B$ and
- ▶ if $F \xrightarrow{a} F'$ then $E \xrightarrow{a} E'$ for some E' such that $(E', F') \in B$

- A binary relation B between processes is a bisimulation provided that, whenever (E, F) ∈ B and a ∈ A,
- if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $(E', F') \in B$ and
- ▶ if $F \xrightarrow{a} F'$ then $E \xrightarrow{a} E'$ for some E' such that $(E', F') \in B$
- ▶ *E* and *F* are bisimulation equivalent (or bisimilar) if there is a bisimulation relation *B* such that $(E, F) \in B$.

- A binary relation B between processes is a bisimulation provided that, whenever (E, F) ∈ B and a ∈ A,
- if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $(E', F') \in B$ and
- ▶ if $F \xrightarrow{a} F'$ then $E \xrightarrow{a} E'$ for some E' such that $(E', F') \in B$
- ▶ *E* and *F* are bisimulation equivalent (or bisimilar) if there is a bisimulation relation *B* such that $(E, F) \in B$.

• We write $E \sim F$ if E and F are bisimilar

▶
$$Cl \stackrel{\text{def}}{=} tick.Cl$$
 $Cl_2 \stackrel{\text{def}}{=} tick.tick.Cl_2$

▶ $Cl \stackrel{\text{def}}{=} tick.Cl$ $Cl_2 \stackrel{\text{def}}{=} tick.tick.Cl_2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $B_1 = \{(Cl, Cl_2)\}$ is not a bisimulation

- ▶ $Cl \stackrel{\text{def}}{=} tick.Cl$ $Cl_2 \stackrel{\text{def}}{=} tick.tick.Cl_2$
- ▶ B₁ = {(Cl, Cl₂)} is not a bisimulation
- ▶ $B_2 = \{(Cl, Cl_2), (Cl, tick.Cl_2)\}$ is a bisimulation.

 $Ven_1 \stackrel{\text{def}}{=} 1p.1p.(tea.Ven_1 + coffee.Ven_1)$ $Ven_2 \stackrel{\text{def}}{=} 1p.(1p.tea.Ven_2 + 1p.coffee.Ven_2)$

▶ $Cl \stackrel{\text{def}}{=} tick.Cl$ $Cl_2 \stackrel{\text{def}}{=} tick.tick.Cl_2$

▶ $B_2 = \{(Cl, Cl_2), (Cl, tick.Cl_2)\}$ is a bisimulation.

$$Ven_1 \stackrel{\text{def}}{=} 1p.1p.(\texttt{tea.Ven}_1 + \texttt{coffee.Ven}_1)$$

 $Ven_2 \stackrel{\text{def}}{=} 1p.(1p.\texttt{tea.Ven}_2 + 1p.\texttt{coffee.Ven}_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ven1 not bisimilar to Ven2

Another example

Another example

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▶ Show $\text{Sem}_{2_0} \sim \text{Sem} \mid \text{Sem}$

Another example

$$\begin{array}{rcl} & \operatorname{Sem} & \stackrel{\mathrm{def}}{=} & \operatorname{get.Sem}' \\ & & \operatorname{Sem}' & \stackrel{\mathrm{def}}{=} & \operatorname{put.Sem} \\ & & \operatorname{Sem2}_0 & \stackrel{\mathrm{def}}{=} & \operatorname{get.Sem2}_1 \\ & & \operatorname{Sem2}_1 & \stackrel{\mathrm{def}}{=} & \operatorname{get.Sem2}_2 + \operatorname{put.Sem2}_0 \\ & & \operatorname{Sem2}_2 & \stackrel{\mathrm{def}}{=} & \operatorname{put.Sem2}_1 \end{array}$$

- $\blacktriangleright \text{ Show Sem}2_0 \sim \text{Sem} \mid \text{Sem}$
- The following relation is a bisimulation

$$B = \{ \begin{array}{ll} (\operatorname{Sem2}_0, \operatorname{Sem} | \operatorname{Sem}), \\ (\operatorname{Sem2}_1, \operatorname{Sem}' | \operatorname{Sem}), \\ (\operatorname{Sem2}_1, \operatorname{Sem} | \operatorname{Sem}'), \\ (\operatorname{Sem2}_2, \operatorname{Sem}' | \operatorname{Sem}') \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Game interpretation

Board: Material: Players:	Transition systems of E and F . Two (identical) pebbles initially on the states E and R (refuter) and V (verifier), R and V take turns, R moves first.	
R-move:	Choose any of the two pebbles Move pebble across any transition	
V-move:	Choose the other pebble choose a transition having the same label move pebble across it	
<i>R</i> wins if: <i>V</i> wins if:	V cannot reply to his last move. R cannot move or the game goes on forever. (i.e., a draw counts as a win for V).	
Theorem:	R can force a win iff E and F are not bisimilar. V can force a win iff E and F are bisimilar.	

Which of the following are bisimilar?

		Y/N
a.0	a.a.0	
a.0	a.0 + a.0	
a.0	a.0 a.0	
a.a.0	a.0 a.0	
a.b.0	a.0 b.0	
a.b.0 + b.a.0	a.0 b.0	
$a.\overline{a}.0 + \overline{a}.a.0$	a.0 ā.0	
$a.\overline{a}.0 + \overline{a}.a.0 + \tau.0$	a.0 ā.0	
τ.0	(a.0 ā.0)\ <i>a</i>	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Which of the following are bisimilar?

		Y/N
a.0	a.a.0	N
a.0	a.0 + a.0	Y
a.0	a.0 a.0	N
a.a.0	a.0 a.0	Y
a.b.0	a.0 b.0	N
a.b.0 + b.a.0	a.0 b.0	Y
$a.\overline{a}.0 + \overline{a}.a.0$	a.0 ā.0	N
$a.\overline{a}.0 + \overline{a}.a.0 + \tau.0$	a.0 ā.0	Y
τ.0	(a.0 ā.0)\ <i>a</i>	Y

(ロ)、

1. Behavioural equivalence should be an equivalence relation, reflexive, symmetric and transitive.

(ロ)、(型)、(E)、(E)、 E) の(の)

- 1. Behavioural equivalence should be an equivalence relation, reflexive, symmetric and transitive.
- 2. Processes that may terminate (deadlock) should not be equivalent to processes that may not terminate (deadlock).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Behavioural equivalence should be an equivalence relation, reflexive, symmetric and transitive.
- 2. Processes that may terminate (deadlock) should not be equivalent to processes that may not terminate (deadlock).
- 3. Congruence: if a component Q of P is replaced by an equivalent component Q' yielding P', then P and P' should also be equivalent.

- 1. Behavioural equivalence should be an equivalence relation, reflexive, symmetric and transitive.
- 2. Processes that may terminate (deadlock) should not be equivalent to processes that may not terminate (deadlock).
- 3. Congruence: if a component Q of P is replaced by an equivalent component Q' yielding P', then P and P' should also be equivalent.
- 4. Two processes should be equivalent iff they satisfy exactly the same properties expressible in a nice modal or temporal logic

- 1. Behavioural equivalence should be an equivalence relation, reflexive, symmetric and transitive.
- 2. Processes that may terminate (deadlock) should not be equivalent to processes that may not terminate (deadlock).
- 3. Congruence: if a component Q of P is replaced by an equivalent component Q' yielding P', then P and P' should also be equivalent.
- 4. Two processes should be equivalent iff they satisfy exactly the same properties expressible in a nice modal or temporal logic

5. It should abstract from silent actions.

- 1. Behavioural equivalence should be an equivalence relation, reflexive, symmetric and transitive.
- 2. Processes that may terminate (deadlock) should not be equivalent to processes that may not terminate (deadlock).
- 3. Congruence: if a component Q of P is replaced by an equivalent component Q' yielding P', then P and P' should also be equivalent.
- 4. Two processes should be equivalent iff they satisfy exactly the same properties expressible in a nice modal or temporal logic

5. It should abstract from silent actions.

We deal first with conditions 1-4

• Theorem :
$$E \sim E$$

- Theorem : $E \sim E$
- Theorem: if $E \sim F$ then $F \sim E$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Theorem : $E \sim E$
- Theorem: if $E \sim F$ then $F \sim E$.
- Theorem : if $E \sim F$ and $F \sim G$, then $E \sim G$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Theorem : $E \sim E$
- Theorem: if $E \sim F$ then $F \sim E$.
- ► Theorem : if E ~ F and F ~ G, then E ~ G. Proof: Since E ~ F, (E, F) ∈ B₁ for some bisimulation B₁. Since F ~ G, (F, G) ∈ B₂ for some bisimulation B₂. So (E, G) ∈ B₁ ∘ B₂. We show that B₁ ∘ B₂ is a bisimulation.

• Theorem : $E \sim E$

- Theorem: if $E \sim F$ then $F \sim E$.
- Theorem : if $E \sim F$ and $F \sim G$, then $E \sim G$. **Proof**: Since $E \sim F$, $(E, F) \in B_1$ for some bisimulation B_1 . Since $F \sim G$, $(F, G) \in B_2$ for some bisimulation B_2 . So $(E, G) \in B_1 \circ B_2$. We show that $B_1 \circ B_2$ is a bisimulation. Let $(H_1, H_2) \in B_1 \circ B_2$ and $H_1 \xrightarrow{a} H'_1$. We find H'_2 such that $H_2 \xrightarrow{a} H_2$ and $(H_1, H_2) \in B_1 \circ B_2$. Since $(H_1, H_2) \in B_1 \circ B_2$, there is H such that $(H_1, H) \in B_1$ and $(H, H_2) \in B_2$. Since B_1 is bisimulation, there is H' such that $H \xrightarrow{a} H'$ and $(H'_1, H') \in B_1$. Since B_2 is bisimulation, there is H'_2 such that $H_2 \xrightarrow{a} H_2'$ and $(H', H_2') \in B_2$. Since $(H_1', H') \in B_1$ and $(H', H'_2) \in B_2$, we have $(H'_1, H'_2) \in B_1 \circ B_2$.

1. $a.E \sim a.F$

- 1. a.E \sim a.F
- 2. $E + G \sim F + G$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

a.E ~ a.F
 E + G ~ F + G
 E | G ~ F | G

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1. $a.E \sim a.F$ 2. $E + G \sim F + G$ 3. $E \mid G \sim F \mid G$ 4. $E[f] \sim F[f]$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1. $a.E \sim a.F$ 2. $E + G \sim F + G$ 3. $E \mid G \sim F \mid G$ 4. $E[f] \sim F[f]$ 5. $E \setminus K \sim F \setminus K$

Proof

Assume $E \sim F$. So there is a bisimulation C with $(E, F) \in C$

- 1. We show that for an *a*, *a*.*E* ~ *a*.*F* Let $B = \{(a.E, a.F)\} \cup C$: clearly, *B* is a bisimulation
- 2. We show that for any G, $E + G \sim F + G$ Let $B = \{E + G, F + G\} \cup C \cup I$ where I is the identity relation: clearly B is a bisimulation
- 3. See next slide
- 4. We show that for any f, $E[f] \sim F[f]$. Let $B = \{(G[f], H[f]) : (G, H) \in C\}$: clearly, B is a bisimulation
- We show that for any K, E\K ~ F\K. Let B = {(G\K, H\K) : (G, H) ∈ C}: clearly, B is a bisimulation

We show $B = \{(E \mid G, F \mid G) : E \sim F\}$ is a bisimulation.

We show $B = \{(E \mid G, F \mid G) : E \sim F\}$ is a bisimulation. Assume that $((E \mid G), (F \mid G)) \in B$ and $E \mid G \xrightarrow{a} E' \mid G'$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We show $B = \{(E \mid G, F \mid G) : E \sim F\}$ is a bisimulation. Assume that $((E \mid G), (F \mid G)) \in B$ and $E \mid G \xrightarrow{a} E' \mid G'$

▶
$$E \xrightarrow{a} E'$$
 and $G = G'$. Because $E \sim F$, we know that $F \xrightarrow{a} F'$ and $E' \sim F'$ for some F' . Therefore $F \mid G \xrightarrow{a} F' \mid G$, and so $((E' \mid G), (F' \mid G)) \in B$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We show $B = \{(E \mid G, F \mid G) : E \sim F\}$ is a bisimulation. Assume that $((E \mid G), (F \mid G)) \in B$ and $E \mid G \xrightarrow{a} E' \mid G'$

- ► $E \xrightarrow{a} E'$ and G = G'. Because $E \sim F$, we know that $F \xrightarrow{a} F'$ and $E' \sim F'$ for some F'. Therefore $F \mid G \xrightarrow{a} F' \mid G$, and so $((E' \mid G), (F' \mid G)) \in B$. ► $G \xrightarrow{a} C'$ and E' = F. So $F \mid C \xrightarrow{a} F \mid C'$ and by definit
- $G \xrightarrow{a} G'$ and E' = E. So $F \mid G \xrightarrow{a} F \mid G'$, and by definition $((E \mid G'), (F \mid G')) \in B$.

We show $B = \{(E \mid G, F \mid G) : E \sim F\}$ is a bisimulation. Assume that $((E \mid G), (F \mid G)) \in B$ and $E \mid G \xrightarrow{a} E' \mid G'$

- ► $E \xrightarrow{a} E'$ and G = G'. Because $E \sim F$, we know that $F \xrightarrow{a} F'$ and $E' \sim F'$ for some F'. Therefore $F \mid G \xrightarrow{a} F' \mid G$, and so $((E' \mid G), (F' \mid G)) \in B$.
- ► $G \xrightarrow{a} G'$ and E' = E. So $F \mid G \xrightarrow{a} F \mid G'$, and by definition $((E \mid G'), (F \mid G')) \in B$.

▶ $a = \tau$ and $E \xrightarrow{b} E'$ and $G \xrightarrow{\overline{b}} G'$. $F \xrightarrow{b} F'$ for some F'such that $E' \sim F'$, so $F \mid G \xrightarrow{\tau} F' \mid G'$, and therefore $((E' \mid G'), (F' \mid G')) \in B$.

We show $B = \{(E \mid G, F \mid G) : E \sim F\}$ is a bisimulation. Assume that $((E \mid G), (F \mid G)) \in B$ and $E \mid G \xrightarrow{a} E' \mid G'$

- ► $E \xrightarrow{a} E'$ and G = G'. Because $E \sim F$, we know that $F \xrightarrow{a} F'$ and $E' \sim F'$ for some F'. Therefore $F \mid G \xrightarrow{a} F' \mid G$, and so $((E' \mid G), (F' \mid G)) \in B$.
- ► $G \xrightarrow{a} G'$ and E' = E. So $F \mid G \xrightarrow{a} F \mid G'$, and by definition $((E \mid G'), (F \mid G')) \in B$.

► $a = \tau$ and $E \xrightarrow{b} E'$ and $G \xrightarrow{\overline{b}} G'$. $F \xrightarrow{b} F'$ for some F'such that $E' \sim F'$, so $F \mid G \xrightarrow{\tau} F' \mid G'$, and therefore $((E' \mid G'), (F' \mid G')) \in B$.

Symmetrically for a transition $F \mid G \xrightarrow{a} F' \mid G'$.

Let E ≡_{HM} F if E and F satisfy exactly the same formulas of HM-Logic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let E ≡_{HM} F if E and F satisfy exactly the same formulas of HM-Logic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Theorem: If $E \sim F$ then $E \equiv_{HM} F$.

Let E ≡_{HM} F if E and F satisfy exactly the same formulas of HM-Logic.

- Theorem: If $E \sim F$ then $E \equiv_{HM} F$.
- Proof: By induction on modal formulas Φ. For any G and H, if G ~ H, then G ⊨ Φ iff H ⊨ Φ.

Let E ≡_{HM} F if E and F satisfy exactly the same formulas of HM-Logic.

- Theorem: If $E \sim F$ then $E \equiv_{HM} F$.
- Proof: By induction on modal formulas Φ. For any G and H, if G ~ H, then G ⊨ Φ iff H ⊨ Φ.
- Basis: $\Phi = tt$ or $\Phi = ff$. Clear.

- Let E ≡_{HM} F if E and F satisfy exactly the same formulas of HM-Logic.
- Theorem: If $E \sim F$ then $E \equiv_{HM} F$.
- Proof: By induction on modal formulas Φ. For any G and H, if G ~ H, then G ⊨ Φ iff H ⊨ Φ.
- Basis: $\Phi = tt$ or $\Phi = ff$. Clear.
- ▶ Step: We consider only the case $\Phi = [K]\Psi$. By symmetry, it suffices to show that $G \models [K]\Psi$ implies $H \models [K]\Psi$. Assume $G \models [K]\Psi$. For any G' such that $G \xrightarrow{a} G'$ and $a \in K$, it follows that $G' \models \Psi$. Let $H \xrightarrow{a} H'$ (with $a \in K$). Since $G \sim H$, there is a G' such that $G \xrightarrow{a} G'$ and $G' \sim H'$. By the induction hypothesis $H' \models \Psi$, and therefore $H \models \Phi$.

• *E* is immediately image-finite if, for each $a \in A$, the set $\{F : E \xrightarrow{a} F\}$ is finite.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- *E* is immediately image-finite if, for each $a \in A$, the set $\{F : E \xrightarrow{a} F\}$ is finite.
- E is image-finite if all processes reachable from it are immediately image-finite.

▶ Theorem: If *E*, *F* image-finite and $E \equiv_{HM} F$, then $E \sim F$.

• Theorem: If E, F image-finite and $E \equiv_{HM} F$, then $E \sim F$.

▶ Proof: the following relation is a bisimulation. $\{(E, F) : E \equiv_{HM} F \text{ and } E, F \text{ are image-finite}\}$

- Theorem: If E, F image-finite and $E \equiv_{HM} F$, then $E \sim F$.
- Proof: the following relation is a bisimulation. {(E, F) : E ≡_{HM} F and E, F are image-finite}
- ► Assume $G \equiv_{\text{HM}} H$ and $G \xrightarrow{a} G'$ Need to show $H \xrightarrow{a} H_i$ and $G' \equiv_{\text{HM}} H_i$
- ▶ Because $G \models \langle a \rangle$ tt and $G \equiv_{HM} H$, $H \models \langle a \rangle$ tt So $\{H' : H \xrightarrow{a} H'\} = \{H_1, \dots, H_n\}$ is non-empty and finite by image-finiteness.

- Theorem: If E, F image-finite and $E \equiv_{HM} F$, then $E \sim F$.
- ▶ Proof: the following relation is a bisimulation. $\{(E, F) : E \equiv_{HM} F \text{ and } E, F \text{ are image-finite}\}$
- ► Assume $G \equiv_{\text{HM}} H$ and $G \xrightarrow{a} G'$ Need to show $H \xrightarrow{a} H_i$ and $G' \equiv_{\text{HM}} H_i$
- ▶ Because $G \models \langle a \rangle$ tt and $G \equiv_{HM} H$, $H \models \langle a \rangle$ tt So $\{H' : H \xrightarrow{a} H'\} = \{H_1, \dots, H_n\}$ is non-empty and finite by image-finiteness.
- ▶ If $G' \not\equiv_{HM} H_i$ for each $i : 1 \le i \le n$, there are formulas Φ_1, \ldots, Φ_n such that $G' \models \Phi_i$ and $H_i \not\models \Phi_i$. (Here we use the fact that M is closed under complement.)

- ▶ Theorem: If *E*, *F* image-finite and $E \equiv_{HM} F$, then $E \sim F$.
- Proof: the following relation is a bisimulation. {(E, F) : E ≡_{HM} F and E, F are image-finite}
- ► Assume $G \equiv_{\text{HM}} H$ and $G \xrightarrow{a} G'$ Need to show $H \xrightarrow{a} H_i$ and $G' \equiv_{\text{HM}} H_i$
- ▶ Because $G \models \langle a \rangle$ tt and $G \equiv_{HM} H$, $H \models \langle a \rangle$ tt So $\{H' : H \xrightarrow{a} H'\} = \{H_1, \dots, H_n\}$ is non-empty and finite by image-finiteness.
- ▶ If $G' \not\equiv_{HM} H_i$ for each $i : 1 \le i \le n$, there are formulas Φ_1, \ldots, Φ_n such that $G' \models \Phi_i$ and $H_i \not\models \Phi_i$. (Here we use the fact that M is closed under complement.)

• Let
$$\Psi = \Phi_1 \land \ldots \land \Phi_n$$
.
 $G \models \langle a \rangle \Psi$ but $H \not\models \langle a \rangle \Psi$ because each H_i fails to have
property Ψ . Contradicts $G \equiv_{\text{HM}} H$.

- ▶ Theorem: If *E*, *F* image-finite and $E \equiv_{HM} F$, then $E \sim F$.
- ▶ Proof: the following relation is a bisimulation. $\{(E, F) : E \equiv_{HM} F \text{ and } E, F \text{ are image-finite}\}$
- ► Assume $G \equiv_{\text{HM}} H$ and $G \xrightarrow{a} G'$ Need to show $H \xrightarrow{a} H_i$ and $G' \equiv_{\text{HM}} H_i$
- ▶ Because $G \models \langle a \rangle$ tt and $G \equiv_{HM} H$, $H \models \langle a \rangle$ tt So $\{H' : H \xrightarrow{a} H'\} = \{H_1, \dots, H_n\}$ is non-empty and finite by image-finiteness.
- ▶ If $G' \not\equiv_{\text{HM}} H_i$ for each $i : 1 \le i \le n$, there are formulas Φ_1, \ldots, Φ_n such that $G' \models \Phi_i$ and $H_i \not\models \Phi_i$. (Here we use the fact that M is closed under complement.)

• Let
$$\Psi = \Phi_1 \land \ldots \land \Phi_n$$
.
 $G \models \langle a \rangle \Psi$ but $H \not\models \langle a \rangle \Psi$ because each H_i fails to have
property Ψ . Contradicts $G \equiv_{\text{HM}} H$.

• Case $H \xrightarrow{a} H'$ is symmetric.

Let E ≡_{CTL} F if E and F satisfy exactly the same formulas of CTL[−]-Logic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let E ≡_{CTL} F if E and F satisfy exactly the same formulas of CTL[−]-Logic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Theorem: If $E \sim F$ then $E \equiv_{CTL} F$.

Let E ≡_{CTL} F if E and F satisfy exactly the same formulas of CTL[−]-Logic.

- Theorem: If $E \sim F$ then $E \equiv_{CTL} F$.
- Proof: By induction on formulas Φ. For any G and H, if G ~ H, then G ⊨ Φ iff H ⊨ Φ.

- Let E ≡_{CTL} F if E and F satisfy exactly the same formulas of CTL[−]-Logic.
- Theorem: If $E \sim F$ then $E \equiv_{CTL} F$.
- ▶ Proof: By induction on formulas Φ . For any *G* and *H*, if *G* ~ *H*, then *G* $\models \Phi$ iff *H* $\models \Phi$.
- ▶ Theorem: If *E*, *F* image-finite and $E \equiv_{CTL} F$, then $E \sim F$.

- Let E ≡_{CTL} F if E and F satisfy exactly the same formulas of CTL[−]-Logic.
- Theorem: If $E \sim F$ then $E \equiv_{CTL} F$.
- Proof: By induction on formulas Φ. For any G and H, if G ~ H, then G ⊨ Φ iff H ⊨ Φ.
- ▶ Theorem: If *E*, *F* image-finite and $E \equiv_{CTL} F$, then $E \sim F$.

Proof: Because CTL⁻ contains modal logic.