
Edinburgh Concurrency Workbench
Getting Started

Colin Stirling (cps)

School of Informatics

10th October 2013

The Edinburgh Concurrency Workbench

I Type cwb on a dice machine

I All commands end with a semicolon ; and a newline

I Type quit; to finish a session

I Defining processes

agent Process = a.0 + ′a.Process;

I Process names begin with upper case and action names are
written in lower case

I ’a denotes the action a

I Process can be used in other definitions

agent Process1 = b.Process | a.Process;

The Edinburgh Concurrency Workbench

I Type cwb on a dice machine

I All commands end with a semicolon ; and a newline

I Type quit; to finish a session

I Defining processes

agent Process = a.0 + ′a.Process;

I Process names begin with upper case and action names are
written in lower case

I ’a denotes the action a

I Process can be used in other definitions

agent Process1 = b.Process | a.Process;

The Edinburgh Concurrency Workbench

I Type cwb on a dice machine

I All commands end with a semicolon ; and a newline

I Type quit; to finish a session

I Defining processes

agent Process = a.0 + ′a.Process;

I Process names begin with upper case and action names are
written in lower case

I ’a denotes the action a

I Process can be used in other definitions

agent Process1 = b.Process | a.Process;



The Edinburgh Concurrency Workbench

I Type cwb on a dice machine

I All commands end with a semicolon ; and a newline

I Type quit; to finish a session

I Defining processes

agent Process = a.0 + ′a.Process;

I Process names begin with upper case and action names are
written in lower case

I ’a denotes the action a

I Process can be used in other definitions

agent Process1 = b.Process | a.Process;

The Edinburgh Concurrency Workbench

I Type cwb on a dice machine

I All commands end with a semicolon ; and a newline

I Type quit; to finish a session

I Defining processes

agent Process = a.0 + ′a.Process;

I Process names begin with upper case and action names are
written in lower case

I ’a denotes the action a

I Process can be used in other definitions

agent Process1 = b.Process | a.Process;

The Edinburgh Concurrency Workbench

I Type cwb on a dice machine

I All commands end with a semicolon ; and a newline

I Type quit; to finish a session

I Defining processes

agent Process = a.0 + ′a.Process;

I Process names begin with upper case and action names are
written in lower case

I ’a denotes the action a

I Process can be used in other definitions

agent Process1 = b.Process | a.Process;

The Edinburgh Concurrency Workbench

I Type cwb on a dice machine

I All commands end with a semicolon ; and a newline

I Type quit; to finish a session

I Defining processes

agent Process = a.0 + ′a.Process;

I Process names begin with upper case and action names are
written in lower case

I ’a denotes the action a

I Process can be used in other definitions

agent Process1 = b.Process | a.Process;



Modal logic in the workbench

I tt is written T

I ff is written F

I ∧ is written &

I ∨ is written |
I Defining properties

prop Property = 〈a〉T;

I Property can be used in other definitions

prop Property1 = [b]Property | [a]F;

Modal logic in the workbench

I tt is written T

I ff is written F

I ∧ is written &

I ∨ is written |
I Defining properties

prop Property = 〈a〉T;

I Property can be used in other definitions

prop Property1 = [b]Property | [a]F;

Modal logic in the workbench

I tt is written T

I ff is written F

I ∧ is written &

I ∨ is written |
I Defining properties

prop Property = 〈a〉T;

I Property can be used in other definitions

prop Property1 = [b]Property | [a]F;

Modal logic in the workbench

I tt is written T

I ff is written F

I ∧ is written &

I ∨ is written |
I Defining properties

prop Property = 〈a〉T;

I Property can be used in other definitions

prop Property1 = [b]Property | [a]F;



Modal logic in the workbench

I tt is written T

I ff is written F

I ∧ is written &

I ∨ is written |
I Defining properties

prop Property = 〈a〉T;

I Property can be used in other definitions

prop Property1 = [b]Property | [a]F;

CTL− in the workbench

I The workbench’s specification language is not CTL−, but the
modal mu-calculus.

I CTL− can be encoded into the mu-calculus. The encoding is
contained in a file that can be downloaded from the modules
homepage. After giving it a name, say ctl.cwb, type the
command

I input "ctl.cwb";

I AG Φ is written AG (Φ)

I Given a process E and a property P, the command

checkprop(E,P);

checks if E satisfies P

I Answer the questions about playing games with “no”.

CTL− in the workbench

I The workbench’s specification language is not CTL−, but the
modal mu-calculus.

I CTL− can be encoded into the mu-calculus. The encoding is
contained in a file that can be downloaded from the modules
homepage. After giving it a name, say ctl.cwb, type the
command

I input "ctl.cwb";

I AG Φ is written AG (Φ)

I Given a process E and a property P, the command

checkprop(E,P);

checks if E satisfies P

I Answer the questions about playing games with “no”.

CTL− in the workbench

I The workbench’s specification language is not CTL−, but the
modal mu-calculus.

I CTL− can be encoded into the mu-calculus. The encoding is
contained in a file that can be downloaded from the modules
homepage. After giving it a name, say ctl.cwb, type the
command

I input "ctl.cwb";

I AG Φ is written AG (Φ)

I Given a process E and a property P, the command

checkprop(E,P);

checks if E satisfies P

I Answer the questions about playing games with “no”.



CTL− in the workbench

I The workbench’s specification language is not CTL−, but the
modal mu-calculus.

I CTL− can be encoded into the mu-calculus. The encoding is
contained in a file that can be downloaded from the modules
homepage. After giving it a name, say ctl.cwb, type the
command

I input "ctl.cwb";

I AG Φ is written AG (Φ)

I Given a process E and a property P, the command

checkprop(E,P);

checks if E satisfies P

I Answer the questions about playing games with “no”.

CTL− in the workbench

I The workbench’s specification language is not CTL−, but the
modal mu-calculus.

I CTL− can be encoded into the mu-calculus. The encoding is
contained in a file that can be downloaded from the modules
homepage. After giving it a name, say ctl.cwb, type the
command

I input "ctl.cwb";

I AG Φ is written AG (Φ)

I Given a process E and a property P, the command

checkprop(E,P);

checks if E satisfies P

I Answer the questions about playing games with “no”.

CTL− in the workbench

I The workbench’s specification language is not CTL−, but the
modal mu-calculus.

I CTL− can be encoded into the mu-calculus. The encoding is
contained in a file that can be downloaded from the modules
homepage. After giving it a name, say ctl.cwb, type the
command

I input "ctl.cwb";

I AG Φ is written AG (Φ)

I Given a process E and a property P, the command

checkprop(E,P);

checks if E satisfies P

I Answer the questions about playing games with “no”.


