Communication and Concurrency Lecture 6

Colin Stirling (cps)

School of Informatics

7th October 2013

Temporal logic CTL⁻: syntax

$$\begin{array}{ll} \Phi & ::= & \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [\mathit{K}] \Phi \mid \langle \mathit{K} \rangle \Phi \\ & \mathtt{AG} \; \Phi \mid \mathtt{EF} \; \Phi \mid \mathtt{AF} \; \Phi \mid \mathtt{EG} \; \Phi \end{array}$$

A formula can be

Temporal logic CTL⁻: syntax

$\begin{array}{ll} \Phi & ::= & \mathsf{tt} \mid \mathsf{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [K] \Phi \mid \langle K \rangle \Phi \\ & \mathsf{AG} \; \Phi \mid \mathsf{EF} \; \Phi \mid \mathsf{AF} \; \Phi \mid \mathsf{EG} \; \Phi \end{array}$

A formula can be

▶ a formula of Hennessy-Milner logic,

Temporal logic CTL⁻: syntax

$$\begin{array}{ll} \Phi & ::= & \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [\mathit{K}] \Phi \mid \langle \mathit{K} \rangle \Phi \\ & \mathtt{AG} \; \Phi \mid \mathtt{EF} \; \Phi \mid \mathtt{AF} \; \Phi \mid \mathtt{EG} \; \Phi \end{array}$$

A formula can be

- ▶ a formula of Hennessy-Milner logic,
- ▶ a formula AG Φ , read as "always Φ " or "globally Φ ,"

Temporal logic CTL⁻: syntax

$$\begin{array}{ll} \Phi & ::= & \mathsf{tt} \mid \mathsf{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [K] \Phi \mid \langle K \rangle \Phi \\ & \mathsf{AG} \; \Phi \mid \mathsf{EF} \; \Phi \mid \mathsf{AF} \; \Phi \mid \mathsf{EG} \; \Phi \end{array}$$

A formula can be

- ▶ a formula of Hennessy-Milner logic,
- ▶ a formula AG Φ, read as "always Φ" or "globally Φ,"
- ▶ a formula EF Φ, read as "possibly Φ,"

$\begin{array}{ll} \Phi & ::= & \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [\mathit{K}] \Phi \mid \langle \mathit{K} \rangle \Phi \\ & \mathtt{AG} \; \Phi \mid \mathtt{EF} \; \Phi \mid \mathtt{AF} \; \Phi \mid \mathtt{EG} \; \Phi \end{array}$

A formula can be

- ▶ a formula of Hennessy-Milner logic,
- ightharpoonup a formula AG Φ , read as "always Φ " or "globally Φ ,"
- a formula EF Φ, read as "possibly Φ,"
- ► a formula AF Φ, read as "eventually Φ,"

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● りへで

Temporal logic CTL⁻: syntax

$\begin{array}{ll} \Phi & ::= & \mathsf{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [\mathcal{K}] \Phi \mid \langle \mathcal{K} \rangle \Phi \\ & \mathsf{AG} \; \Phi \mid \mathsf{EF} \; \Phi \mid \mathsf{AF} \; \Phi \mid \mathsf{EG} \; \Phi \end{array}$

A formula can be

- ▶ a formula of Hennessy-Milner logic,
- ▶ a formula AG Φ, read as "always Φ" or "globally Φ,"
- ► a formula EF Φ, read as "possibly Φ,"
- ► a formula AF Φ, read as "eventually Φ,"
- ► a formula EG Φ, read as "EG Φ."

Temporal logic CTL⁻: semantics

A run (of a process E_0) is a sequence of transitions of the form

$$E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} E_2 \xrightarrow{a_3} \cdots$$

which is "maximal" in the sense that if it is finite then the final process is unable to do any action.

Temporal logic CTL⁻: semantics

A run (of a process E_0) is a sequence of transitions of the form

$$E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} E_2 \xrightarrow{a_3} \cdots$$

which is "maximal" in the sense that if it is finite then the final process is unable to do any action.

$$E_0 \models \operatorname{AG} \Phi$$
 iff for all runs $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots$, for all $i \geq 0$, $E_i \models \Phi$
 $E_0 \models \operatorname{EF} \Phi$ iff for some run $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots$, for some $i \geq 0$, $E_i \models \Phi$
 $E_0 \models \operatorname{AF} \Phi$ iff for all runs $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots$, for some $i \geq 0$, $E_i \models \Phi$
 $E_0 \models \operatorname{EG} \Phi$ iff for some run $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots$, for all $i \geq 0$, $E_i \models \Phi$

Intuitive meaning

▶ $E_0 \models AG Φ$ means "all processes reachable from E_0 satisfy Φ."

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ □ ● 9 Q ○

Intuitive meaning

- ▶ $E_0 \models AG Φ$ means "all processes reachable from E_0 satisfy Φ."
- ▶ $E_0 \models \text{EF } \Phi$ means "some process reachable from E_0 satisfies Φ ."

Intuitive meaning

- ▶ $E_0 \models AG Φ$ means "all processes reachable from E_0 satisfy Φ."
- ▶ $E_0 \models \text{EF } \Phi$ means "some process reachable from E_0 satisfies Φ "
- ▶ $E_0 \models AF Φ$ means "eventually a process will be reached which satisfies Φ."

- ▶ $E_0 \models AG Φ$ means "all processes reachable from E_0 satisfy Φ."
- ▶ $E_0 \models \text{EF } \Phi$ means "some process reachable from E_0 satisfies Φ ."
- ▶ $E_0 \models AF \Phi$ means "eventually a process will be reached which satisfies Φ ."
- ▶ E_0 |= EG Φ means "some run always satisfies Φ."

 $ightharpoonup E_0 \models AG \langle - \rangle tt$

Examples

- ightharpoonup $E_0 \models AG \langle \rangle tt$
- ▶ All processes reachable from E_0 can do some action. E_0 is deadlock-free.

Examples

- ightharpoonup $E_0 \models AG \langle \rangle tt$
- ▶ All processes reachable from E_0 can do some action. E_0 is deadlock-free.
- $ightharpoonup E_0 \models AF[-]ff$

- ightharpoonup $E_0 \models AG \langle \rangle tt$
- ▶ All processes reachable from E_0 can do some action. E_0 is deadlock-free.
- $ightharpoonup E_0 \models AF[-]ff$
- ► Eventually a process is reached which cannot execute any action. *E* is guaranteed to terminate.

- ightharpoonup $E_0 \models AG \langle \rangle tt$
- ▶ All processes reachable from E_0 can do some action. E_0 is deadlock-free.
- ightharpoonup $E_0 \models AF[-]ff$
- ► Eventually a process is reached which cannot execute any action. *E* is guaranteed to terminate.
- ► AG [request]AF (⟨granted⟩tt ∧ [-granted]ff)

Examples

$ightharpoonup E_0 \models AG \langle - \rangle tt$

- ▶ All processes reachable from E_0 can do some action. E_0 is deadlock-free.
- ightharpoonup $E_0 \models AF [-]ff$
- ► Eventually a process is reached which cannot execute any action. *E* is guaranteed to terminate.
- ▶ AG [request]AF ($\langle granted \rangle tt \wedge [-granted]ff$)
- ► All requests will eventually be granted

Exercise

$$P \stackrel{\text{def}}{=} a.P + b.Q$$
 $Q \stackrel{\text{def}}{=} c.Q$

Does $P \models \Phi$ hold when Φ is

	Y/N
EF $\langle c \rangle$ tt	
AG $\langle c \rangle$ tt	
AF $\langle c \rangle$ tt	
EG $\langle c \rangle$ tt	
AG EF $\langle c \rangle$ tt	
AF EG $\langle c \rangle$ tt	
EF AG $\langle c \rangle$ tt	
EG AF $\langle c \rangle$ tt	

 $B1f = \overline{b1rf}.B1f + b1wf.B1f + b1wt.B1t$

Р	$\stackrel{\mathrm{def}}{=}$	a.P +	- b.Q	$Q \overset{\mathrm{def}}{=}$	c.Q

Does $P \models \Phi$ hold when Φ is

	Y/N
$EF \langle c \rangle tt$	Y
AG $\langle c \rangle$ tt	N
AF $\langle c \rangle$ tt	N
EG $\langle c \rangle$ tt	N
AG EF $\langle c \rangle$ tt	Y
AF EG $\langle c \rangle$ tt	N
$oxed{EF} AG \ \langle c \rangle tt$	Υ
EG AF $\langle c \rangle$ tt	N

S		B1t	=	$\overline{\mathrm{b1rt}}.\mathrm{B1t} + \mathrm{b1wt}.\mathrm{B1t} + \mathrm{b1wf}.\mathrm{B1f}$
	Y/N	B2f B2t	=	$\begin{array}{l} \overline{b2rf}.B2f + b2wf.B2f + b2wt.B2t \\ \overline{b2rt}.B2t + b2wt.B2t + b2wf.B2f \end{array}$
⟨c⟩tt	Y	K1 K2	= =	$\begin{array}{l} \overline{\text{kr1}}.\text{K1} + \text{kw1.K1} + \text{kw2.K2} \\ \overline{\text{kr2}}.\text{K2} + \text{kw2.K2} + \text{kw1.K1} \end{array}$
⟨c⟩tt	N	P1 P11	= =	\overline{\overline{b1wt}.req1.\overline{kw2}.P11} b2rt.P11 + b2rf.P12 + kr2.P11 + kr1.P12
$\langle c \rangle$ tt	N	P12	=	enter1.exit1.b1wf.P1
$\langle c \rangle$ tt	N	P2 P21	= =	$\begin{array}{l} \overline{b2wt}.req2.\overline{kw1}.P21 \\ b1rf.P22 + b1rt.P21 + kr1.P21 + \\ kr2.P22 \end{array}$
EF $\langle c \rangle$ tt	Υ	P22	=	enter2.exit2.b2wf.P2
EG $\langle c \rangle$ tt	N	Peterson	=	(P1 P2 K1 B1f B2f) \ <i>L</i>
<u> </u>	V			

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · 釣९○

Specification: temporal properties

► Mutual exclusion

Specification: temporal properties

- ► Mutual exclusion
- ► Absence of deadlock

- ► Mutual exclusion
- ► Absence of deadlock
- ► Absence of starvation

- ► Mutual exclusion AG ([exit1]ff ∨ [exit2]ff)
- ► Absence of deadlock
- ► Absence of starvation

Specification: temporal properties

- ► Mutual exclusion AG ([exit1]ff ∨ [exit2]ff)
- ightharpoonup Absence of deadlock AG $\langle \rangle$ tt
- ► Absence of starvation

Specification: temporal properties

- ► Mutual exclusion AG ([exit1]ff ∨ [exit2]ff)
- ▶ Absence of deadlock $AG \langle \rangle tt$
- ▶ Absence of starvation (for P1) AG ($[req1]AF \langle exit1 \rangle tt$)

Negation is also redundant in CTL $^-$: For every formula Φ of CTL $^-$ there is a formula Φ^c such that for every process E

$$E \models \Phi^c \text{ iff } E \not\models \Phi$$

Negation is also redundant in CTL⁻: For every formula Φ of CTL⁻ there is a formula Φ^c such that for every process E

$$E \models \Phi^c \text{ iff } E \not\models \Phi$$

 Φ^c is inductively defined as for HML, plus:

$$(AG \Phi)^c = EF \Phi^c$$

 $(EF \Phi)^c = AG \Phi^c$
 $(AF \Phi)^c = EG \Phi^c$
 $(EG \Phi)^c = AF \Phi^c$

◆□▶◆□▶◆≣▶◆≣▶ ■ り९℃

Proposition For every E_0 and for every Φ of CTL⁻:

$$E_0 \models \Phi^c \text{ iff } E_0 \not\models \Phi$$
.

Proposition For every E_0 and for every Φ of CTL⁻:

$$E_0 \models \Phi^c \text{ iff } E_0 \not\models \Phi$$
.

Proof: By induction on the structure of Φ .

Proposition For every E_0 and for every Φ of CTL⁻:

$$E_0 \models \Phi^c \text{ iff } E_0 \not\models \Phi$$
.

Proof: By induction on the structure of Φ . Case $\Phi = AG \Phi_1$.

```
\begin{array}{c} E_0 \models (\operatorname{AG} \, \Phi_1)^c \\ \text{iff} \quad E_0 \models \operatorname{EF} \, \Phi_1^c \\ \text{iff} \quad \text{for some run } E_0 \stackrel{a_1}{\longrightarrow} E_1 \stackrel{a_2}{\longrightarrow} \cdots, \\ \text{for some } i \geq 0 \text{ s.t. } E_i \models \Phi_1^c \\ \text{iff} \quad \text{for some run } E_0 \stackrel{a_1}{\longrightarrow} E_1 \stackrel{a_2}{\longrightarrow} \cdots, \\ \text{for some } i \geq 0 \text{ s.t. } E_i \not\models \Phi_1 \\ \text{iff} \quad \text{not for all run } E_0 \stackrel{a_1}{\longrightarrow} E_1 \stackrel{a_2}{\longrightarrow} \cdots, \\ \text{for all } i \geq 0 \text{ s.t. } E_i \models \Phi_1 \\ \text{iff} \quad E_0 \not\models \operatorname{AG} \, \Phi_1 \end{array}
```

Satisfiability, validity, equivalence

▶ A formula is satisfiable (realisable) if some process satisfies it.

4□ > 4□ > 4 = > 4 = > = 90

<□▶ <□▶ < 亘▶ < 亘▶ < 亘 ● り へ ⊙ ●

Satisfiability, validity, equivalence

- ▶ A formula is satisfiable (realisable) if some process satisfies it.
- ▶ A formula is unsatisfiable if no process satisfies it.

Satisfiability, validity, equivalence

- ▶ A formula is satisfiable (realisable) if some process satisfies it.
- ▶ A formula is unsatisfiable if no process satisfies it.
- ▶ A formula is valid all processes satisfy it.

Satisfiability, validity, equivalence

- ▶ A formula is satisfiable (realisable) if some process satisfies it.
- ▶ A formula is unsatisfiable if no process satisfies it.
- ▶ A formula is valid all processes satisfy it.
- ► Two formulas are equivalent if they are satisfied by exactly the same processes.

Which of the following are valid?

	Y/N
$\boxed{\texttt{AG } \Phi \to \texttt{AF } \Phi}$	
$\texttt{AF} \ \Phi \to \texttt{AG} \ \Phi$	
$\boxed{\texttt{AG } \Phi \to \texttt{EG } \Phi}$	
$\boxed{ \texttt{EG } \Phi \to \texttt{AG } \Phi }$	
$\boxed{ \texttt{AF } \Phi \to \texttt{EF } \Phi }$	
$\boxed{ \texttt{EF} \; \Phi \to \texttt{AF} \; \Phi }$	
$\boxed{ \texttt{EG } \Phi \to \texttt{EF } \Phi }$	
$\boxed{ \text{EF } \Phi \to \text{EG } \Phi }$	
$\boxed{ \text{AF } \Phi \to \text{EG } \Phi }$	
$\texttt{EG} \ \Phi \to \texttt{AF} \ \Phi$	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ◆○○

Which of the following are valid?

	Y/N
$\texttt{AG} \; \Phi \to \texttt{AF} \; \Phi$	Υ
$\texttt{AF} \; \Phi \to \texttt{AG} \; \Phi$	N
$\texttt{AG} \; \Phi \to \texttt{EG} \; \Phi$	Y
$\texttt{EG} \; \Phi \to \texttt{AG} \; \Phi$	N
$\mathtt{AF} \; \Phi \to \mathtt{EF} \; \Phi$	Υ
$\texttt{EF} \; \Phi \to \texttt{AF} \; \Phi$	N
$EG \; \Phi \to EF \; \Phi$	Y
$EF\; \Phi \to EG\; \Phi$	N
$\texttt{AF} \; \Phi \to \texttt{EG} \; \Phi$	N
$\texttt{EG} \ \Phi \to \texttt{AF} \ \Phi$	Y

Exercise

Which of the following are equivalent when Φ , Φ_1 and Φ_2 are arbitrary formulas of CTL⁻?

		Y/N
$\texttt{AG}\ (\Phi_1 \wedge \Phi_2)$	$\mathtt{AG}\ \Phi_1 \wedge \mathtt{AG}\ \Phi_2$	
EF $(\Phi_1 \wedge \Phi_2)$	$\texttt{EF}\ \Phi_1 \land \texttt{EF}\ \Phi_2$	
AF $(\Phi_1 \wedge \Phi_2)$	$\texttt{AF} \; \Phi_1 \land \texttt{AF} \; \Phi_2$	
AG AG Φ	AG Φ	
АГ АГ Ф	AF Φ	
ЕГ ЕГ Ф	ЕГ Ф	
AG EF AG Φ	AG EF Φ	
AG EF AG EF Φ	AG EF Φ	

Exercise

Which of the following are equivalent when $\Phi,\,\Phi_1$ and Φ_2 are arbitrary formulas of CTL $^-?$

		Y/N
$\boxed{\texttt{AG}\left(\Phi_1 \wedge \Phi_2\right)}$	$\texttt{AG}\ \Phi_1 \land \texttt{AG}\ \Phi_2$	Y
$\boxed{ \texttt{EF} \left(\Phi_1 \wedge \Phi_2 \right) }$	$\texttt{EF}\ \Phi_1 \land \texttt{EF}\ \Phi_2$	N
AF $(\Phi_1 \wedge \Phi_2)$	$\mathtt{AF}\ \Phi_1 \land \mathtt{AF}\ \Phi_2$	N
AG AG Φ	AG Φ	Y
AF AF Φ	AF Φ	Y
ЕГ ЕГ Ф	ЕГ Ф	Y
AG EF AG Φ	AG EF Φ	N
AG EF AG EF Φ	AG EF Φ	Y

