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Modal (Hennessy-Milner) logic: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K ]Φ | 〈K 〉Φ
A formula can be

I the constant true formula tt

I the constant false formula ff,

I a conjunction of formulas Φ1 ∧ Φ2

I a disjunction of formulas Φ1 ∨ Φ2,

I a formula [K ]Φ, where K is any set of actions, read as “box
K Φ”, or “for all K -derivatives Φ,”

I a formula 〈K 〉Φ, where K is any set of actions, read as
“diamond K Φ”, or “for some K -derivative Φ.”
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Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula Φ. Either E
satisfies Φ, denoted by E |= Φ, or it doesn’t, denoted by E 6|= Φ.

I E |= tt E 6|= ff

I E |= Φ ∧Ψ iff E |= Φ and E |= Ψ

I E |= Φ ∨Ψ iff E |= Φ or E |= Ψ

I E |= [K ]Φ iff ∀F ∈ {E ′ : E
a−→ E ′ and a ∈ K}. F |= Φ

I E |= 〈K 〉Φ iff ∃F ∈ {E ′ : E
a−→ E ′ and a ∈ K}. F |= Φ

I A process E has the property [K ]Φ if every process which E
evolves to after carrying out any action in K has the property
Φ

I A process E satisfies 〈K 〉Φ if E can become a process that
satisfies Φ by carrying out an action in K
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Examples

I E |= 〈tick〉tt
E can do a tick

I E |= 〈tick〉〈tock〉tt
E can do a tick and then a tock

I E |= 〈{tick, tock}〉tt
E can do a tick or a tock

I E |= [tick]ff
E cannot do a tick

I E |= 〈tick〉ff
This is equivalent to ff!

I E |= [tick]tt
This is equivalent to true!
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Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

I iff ∀F ∈ {E : Cl
tick−→ E}. F |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt and Cl |= [tock]ff

I iff ∃F ∈ {E : Cl
tick−→ E} and Cl |= [tock]ff

I iff ∃F ∈ {Cl} and Cl |= [tock]ff

I iff Cl |= [tock]ff

I iff {E : Cl
tock−→ E} = ∅

I iff ∅ = ∅
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Syntactic sugar for sets of actions

Let A be a universal set of actions including τ .
We write

I a1, . . . , an for {a1, . . . , an}

I − for the set A

I −K for the set A− K

I −a1, . . . , an for A− {a1, . . . , an}
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More examples

I E |= [−]ff

I E is deadlocked, i.e., it cannot execute any action

I E |= 〈−〉tt
I E can execute some action

I E |= 〈−〉tt ∧ [−a]ff

I a must happen next; something can happen, and nothing but
a can happen

I E |= 〈−〉tt ∧ [−]Φ

I Φ holds after one step

I E |= 〈−〉tt ∧ [−](〈−〉tt ∧ [−](〈−〉tt ∧ [−a]ff))
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Exercise

Process Formula Y/N

〈a〉〈b〉tt
〈a〉[b]ff

a.0 + a.b.0 [a]〈b〉tt
[a][b]ff

〈a〉tt
(a.0 | a.0) 〈τ〉tt

〈a〉〈τ〉tt
〈a〉tt

(a.0 | a.0)\a 〈τ〉tt
〈a〉〈τ〉tt

Negation

HML can be extended with a negation operator ¬ having the
semantics: E |= ¬Φ iff E 6|= Φ

Negation is redundant in the following sense: For every formula Φ
of HML there is a formula Φc such that for every process E

E |= Φc iff E 6|= Φ

Φc is inductively defined as follows:

ttc = ff
ffc = tt

(Φ1 ∧ Φ2)c = Φc
1 ∨ Φc

2

(Φ1 ∨ Φ2)c = Φc
1 ∧ Φc

2

([K ]Φ)c = 〈K 〉Φc

(〈K 〉Φ)c = [K ]Φc
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HML can be extended with a negation operator ¬ having the
semantics: E |= ¬Φ iff E 6|= Φ
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2

([K ]Φ)c = 〈K 〉Φc

(〈K 〉Φ)c = [K ]Φc

Proposition: For every process F and HML-formula Φ:

F |= Φc iff F 6|= Φ .

Proof: By induction on the structure of Φ
Basis: Φ = tt and Φ = ff. Trivial.
Induction step:
Case Φ = Φ1 ∧ Φ2

F |= (Φ1 ∧ Φ2)c

iff F |= Φc
1 ∨ Φc

2

iff F |= Φc
1 or F |= Φc

2 (by clause for ∨)
iff F 6|= Φ1 or F 6|= Φ2 (by i.h.)
iff F 6|= Φ1 ∧ Φ2 (by clause for ∧).
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Case Φ = [K ]Φ1.

F |= ([K ]Φ1)c

iff F |= 〈K 〉Φc
1

iff ∃G .∃a ∈ K .F
a−→ G and G |= Φc

1

iff ∃G .∃a ∈ K .F
a−→ G and G 6|= Φ1 (by i.h.)

iff F 6|= [K ]Φ1

Realisability, validity, equivalence

I A formula is satisfiable (or realisable) if some process satisfies
it.

I A formula is unsatisfiable if no process satisfies it.

I A formula is valid if all processes satisfy it.

I Two formulas are equivalent if they are satisfied by exactly the
same processes
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Realisability, validity, equivalence

I A formula is satisfiable (or realisable) if some process satisfies
it.

I A formula is unsatisfiable if no process satisfies it.

I A formula is valid if all processes satisfy it.

I Two formulas are equivalent if they are satisfied by exactly the
same processes

Exercise

Are the following statements true?
Y/N

If Φ valid then Φ satisfiable

If Φ satisfiable then Φc unsatisfiable

If Φ valid then Φc unsatisfiable

If Φ unsatisfiable then Φc valid



Exercise

Let → be the implies connective whose definition is

Φ→ Ψ
def
= Φc ∨Ψ.

Are the following statements true?

Y/N

If (Φ→ Ψ) valid and Φ valid then Ψ valid

If (Φ→ Ψ) satisfiable and Φ satisfiable then Ψ satisfiable

If (Φ→ Ψ) valid and Φ satisfiable then Ψ satisfiable

Exercise
Which of the following are valid, V, unsatisfiable, U, or neither, N?

V U N

Φ→ ¬Φ

¬Φ→ Φ

Φ→ (Ψ→ Φ)

Φ→ (Φ→ Ψ)

〈a〉tt ∧ [a]ff

〈a〉[b](〈a〉tt ∧ [a]ff)

〈a〉[b](〈a〉tt ∧ [a]ff) ∧ [−]〈b〉tt
〈a〉[b](〈a〉tt ∧ [a]ff) ∧ [−]〈−〉tt
〈a〉(Φ ∨Ψ)→ (〈a〉Φ ∨ 〈a〉Ψ)

(〈a〉Φ ∧ 〈a〉Ψ)→ 〈a〉(Φ ∧Ψ)

[a](Φ→ Ψ)→ ([a]Φ→ [a]Ψ)

([a]Φ→ [a]Ψ)→ [a](Φ→ Ψ)


