Communication and Concurrency Lecture 5

Colin Stirling (cps)

School of Informatics

8th October 2012

 $\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [K] \Phi \mid \langle K \rangle \Phi$

A formula can be

- * ロ > * @ > * 目 > * 目 > 「目 - のへで

Modal (Hennessy-Milner) logic: syntax

 $\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [K] \Phi \mid \langle K \rangle \Phi$

A formula can be

- ► the constant true formula tt
- ► the constant false formula ff,

Modal (Hennessy-Milner) logic: syntax

 $\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [K] \Phi \mid \langle K \rangle \Phi$

A formula can be

- ▶ the constant true formula tt
- ▶ the constant false formula ff,
- ▶ a conjunction of formulas $\Phi_1 \land \Phi_2$
- a disjunction of formulas $\Phi_1 \lor \Phi_2$,

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣��

Modal (Hennessy-Milner) logic: syntax

Modal (Hennessy-Milner) logic: syntax

 $\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [K] \Phi \mid \langle K \rangle \Phi$

A formula can be

- the constant true formula tt
- ► the constant false formula ff,
- \blacktriangleright a conjunction of formulas $\Phi_1 \wedge \Phi_2$
- \blacktriangleright a disjunction of formulas $\Phi_1 \lor \Phi_2,$
- a formula [K]Φ, where K is any set of actions, read as "box K Φ", or "for all K-derivatives Φ,"

 $\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [K] \Phi \mid \langle K \rangle \Phi$

A formula can be

- ▶ the constant true formula tt
- the constant false formula ff,
- ▶ a conjunction of formulas $\Phi_1 \land \Phi_2$
- ▶ a disjunction of formulas $\Phi_1 \lor \Phi_2$,
- a formula [K]Φ, where K is any set of actions, read as "box K Φ", or "for all K-derivatives Φ,"
- a formula (K)Φ, where K is any set of actions, read as "diamond K Φ", or "for some K-derivative Φ."

Modal (Hennessy-Milner) logic: semantics

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

► $E \models \texttt{tt}$ $E \not\models \texttt{ff}$

Modal (Hennessy-Milner) logic: semantics

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

- ► $E \models tt$ $E \not\models ff$
- $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Modal (Hennessy-Milner) logic: semantics

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

- ► $E \models tt$ $E \not\models ff$
- $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- ► $E \models [K] \Phi$ iff $\forall F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$

Modal (Hennessy-Milner) logic: semantics

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

- ► $E \models tt$ $E \not\models ff$
- $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- $E \models [K] \Phi$ iff $\forall F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- $E \models \langle K \rangle \Phi$ iff $\exists F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$

▲□▶▲@▶▲≣▶▲≣▶ ≣ の�@

Modal (Hennessy-Milner) logic: semantics

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

- ► $E \models \text{tt}$ $E \not\models \text{ff}$
- $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- $E \models [K] \Phi$ iff $\forall F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- $E \models \langle K \rangle \Phi$ iff $\exists F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- A process *E* has the property [*K*]Φ if every process which *E* evolves to after carrying out any action in *K* has the property Φ

Modal (Hennessy-Milner) logic: semantics

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

- $\blacktriangleright E \models \texttt{tt} \quad E \not\models \texttt{ff}$
- $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- $E \models [K]\Phi$ iff $\forall F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- $E \models \langle K \rangle \Phi$ iff $\exists F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- A process *E* has the property [*K*]Φ if every process which *E* evolves to after carrying out any action in *K* has the property Φ
- A process E satisfies (K)Φ if E can become a process that satisfies Φ by carrying out an action in K

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Examples

• $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick

Examples

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- $E \models \langle \text{tick} \rangle \langle \text{tock} \rangle \text{tt}$ E can do a tick and then a tock

Examples

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- E = (tick)(tock)tt
 E can do a tick and then a tock
- E = ({tick, tock})tt
 E can do a tick or a tock

Examples

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- $E \models \langle \text{tick} \rangle \langle \text{tock} \rangle \text{tt}$ E can do a tick and then a tock
- E = ({tick, tock})tt
 E can do a tick or a tock
- E = [tick]ff
 E cannot do a tick

Examples

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- E = (tick)(tock)tt
 E can do a tick and then a tock
- $E \models \langle \{ \text{tick}, \text{tock} \} \rangle$ tt E can do a tick **or** a tock
- E = [tick]ff
 E cannot do a tick
- $E \models \langle \texttt{tick} \rangle \texttt{ff}$ This is equivalent to ff!

Examples

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- E = (tick)(tock)tt
 E can do a tick and then a tock
- E = ({tick, tock})tt
 E can do a tick or a tock
- E = [tick]ff
 E cannot do a tick
- E \= \tick\ff
 This is equivalent to ff!
- E = [tick]tt
 This is equivalent to true!

・ロト・日本・日本・日本・日本

Checking satisfaction

Checking satisfaction

$$\texttt{Cl} \stackrel{\mathrm{def}}{=} \texttt{tick.Cl}$$

Does Cl have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

 $\texttt{Cl} \stackrel{\text{def}}{=} \texttt{tick.Cl}$

Does Cl have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

• $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Checking satisfaction

Checking satisfaction

$$\texttt{Cl} \stackrel{\mathrm{def}}{=} \texttt{tick.Cl}$$

Does Cl have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- ▶ iff $\forall F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$. $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}] \texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$

▲□▶▲□▶★目▶★目▶ 目 のへの

$\texttt{Cl} \stackrel{\mathrm{def}}{=} \texttt{tick.Cl}$

Does Cl have the property: $[tick]((tick)tt \land [tock]ff)$?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- ▶ iff $\forall F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$. $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}] \texttt{ff}$

・ロト・4回ト・4回ト・4回ト・4日ト

Checking satisfaction

$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

Does Cl have the property: [tick]((tick)tt \land [tock]ff)?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$. $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}] \texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- ▶ iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$

Checking satisfaction

 $\texttt{Cl} \stackrel{\mathrm{def}}{=} \texttt{tick.Cl}$

Does Cl have the property: $[tick]((tick)tt \land [tock]ff)$?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F \in \{E : \operatorname{Cl} \xrightarrow{\operatorname{tick}} E\}$. $F \models \langle \operatorname{tick} \rangle \operatorname{tt} \land [\operatorname{tock}] \operatorname{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- ▶ iff $Cl \models \langle tick \rangle tt and Cl \models [tock]ff$
- ▶ iff $\exists F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$ and $Cl \models [\texttt{tock}]\texttt{ff}$

Checking satisfaction

Checking satisfaction

$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

Does Cl have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- ▶ iff $\forall F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$. $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}] \texttt{ff}$
- iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}] \texttt{ff}$
- ▶ iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$
- ▶ iff $\exists F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$ and $Cl \models [\texttt{tock}]ff$
- ▶ iff $\exists F \in \{\texttt{Cl}\}$ and $\texttt{Cl} \models [\texttt{tock}]\texttt{ff}$
- ▶ iff Cl ⊨ [tock]ff

$\texttt{Cl} \stackrel{\mathrm{def}}{=} \texttt{tick.Cl}$

Does Cl have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- ▶ iff $\forall F \in \{E : \texttt{Cl} \xrightarrow{\texttt{tick}} E\}$. $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$
- iff $Cl \models (tick)tt \land [tock]ff$
- ▶ iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$
- ▶ iff $\exists F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$ and $Cl \models [\texttt{tock}]ff$
- ▶ iff $\exists F \in {\texttt{Cl}}$ and $\texttt{Cl} \models [\texttt{tock}]\texttt{ff}$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Checking satisfaction

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

Does Cl have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- ▶ iff $\forall F \in \{E : \texttt{Cl} \xrightarrow{\texttt{tick}} E\}$. $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- ▶ iff $Cl \models \langle tick \rangle tt and Cl \models [tock]ff$
- ▶ iff $\exists F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$ and $Cl \models [\texttt{tock}]ff$
- ▶ iff $\exists F \in \{\texttt{Cl}\}$ and $\texttt{Cl} \models [\texttt{tock}]\texttt{ff}$
- ▶ iff $Cl \models [tock]ff$
- iff $\{E : \operatorname{Cl} \xrightarrow{\operatorname{tock}} E\} = \emptyset$

Checking satisfaction

 $\texttt{Cl} \stackrel{\mathrm{def}}{=} \texttt{tick.Cl}$

Does Cl have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- ▶ iff $\forall F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$. $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$
- iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}] \texttt{ff}$
- ▶ iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$
- ▶ iff $\exists F \in \{E : Cl \xrightarrow{\texttt{tick}} E\}$ and $Cl \models [\texttt{tock}]ff$
- ▶ iff $\exists F \in {\texttt{Cl}}$ and $\texttt{Cl} \models [\texttt{tock}]\texttt{ff}$
- ▶ iff $Cl \models [tock]ff$
- ▶ iff $\{E : Cl \xrightarrow{\texttt{tock}} E\} = \emptyset$
- ▶ iff $\emptyset = \emptyset$

Syntactic sugar for sets of actions

Syntactic sugar for sets of actions

Let A be a universal set of actions including τ . We write

 \blacktriangleright a_1, \ldots, a_n for $\{a_1, \ldots, a_n\}$

Let A be a universal set of actions including τ . We write

- $\blacktriangleright a_1, \ldots, a_n$ for $\{a_1, \ldots, a_n\}$
- \blacktriangleright for the set A

Let A be a universal set of actions including τ . We write

- a_1, \ldots, a_n for $\{a_1, \ldots, a_n\}$
- \blacktriangleright for the set A
- \blacktriangleright -*K* for the set *A K*

Syntactic sugar for sets of actions

Let A be a universal set of actions including τ . We write

- $\blacktriangleright a_1, \ldots, a_n$ for $\{a_1, \ldots, a_n\}$
- \blacktriangleright for the set A
- \blacktriangleright -K for the set A K
- $-a_1, \ldots, a_n$ for $A \{a_1, \ldots, a_n\}$

More examples

▶ $E \models [-]$ ff

- ▶ *E* |= [-]ff
- *E* is deadlocked, i.e., it cannot execute any action

More examples

- ▶ *E* |= [-]ff
- ► E is deadlocked, i.e., it cannot execute any action
- $\blacktriangleright \ E \models \langle \rangle \texttt{tt}$

More examples

- ▶ *E* |= [-]ff
- **E** is deadlocked, i.e., it cannot execute any action
- $E \models \langle \rangle$ tt
- ► *E* can execute some action

More examples

More examples

- ▶ $E \models [-] ff$
- \blacktriangleright E is deadlocked, i.e., it cannot execute any action
- $E \models \langle \rangle$ tt
- ► *E* can execute some action
- $\blacktriangleright \ E \models \langle \rangle \texttt{tt} \land [-a]\texttt{ff}$

- ▶ *E* |= [-]ff
- \blacktriangleright E is deadlocked, i.e., it cannot execute any action
- $E \models \langle \rangle$ tt
- ► *E* can execute some action
- $\blacktriangleright \ E \models \langle \rangle \texttt{tt} \land [-a]\texttt{ff}$
- a must happen next; something can happen, and nothing but a can happen

 <</td>
 <</td>

 <</td>
 <</td>
 <</td>
 <</td>
 <</td>
 <</td>
 <</td>
 <</td>
 <</td>

 <</td>
 <</td>

More examples

- ▶ $E \models [-]$ ff
- \blacktriangleright E is deadlocked, i.e., it cannot execute any action
- $\blacktriangleright \ E \models \langle \rangle \texttt{tt}$
- ► *E* can execute some action
- $\blacktriangleright \ E \models \langle \rangle \texttt{tt} \land [-a]\texttt{ff}$
- a must happen next; something can happen, and nothing but a can happen
- $\blacktriangleright \ E \models \langle \rangle \texttt{tt} \land [-] \Phi$

More examples

- ▶ *E* |= [-]ff
- \blacktriangleright E is deadlocked, i.e., it cannot execute any action
- $\blacktriangleright \ E \models \langle \rangle \texttt{tt}$
- ► *E* can execute some action
- $\blacktriangleright \ E \models \langle \rangle \texttt{tt} \land [-a]\texttt{ff}$
- a must happen next; something can happen, and nothing but a can happen
- $\blacktriangleright E \models \langle \rangle \texttt{tt} \land [-] \Phi$
- $\blacktriangleright \Phi$ holds after one step

More examples

Exercise

► E	⊨	[-]	ff
-----	---	-----	----

- E is deadlocked, i.e., it cannot execute any action
- $\blacktriangleright E \models \langle \rangle \texttt{tt}$
- *E* can execute some action
- $\blacktriangleright \ E \models \langle \rangle \texttt{tt} \land [-a]\texttt{ff}$
- a must happen next; something can happen, and nothing but a can happen
- $\blacktriangleright E \models \langle \rangle \texttt{tt} \land [-] \Phi$
- $\blacktriangleright \Phi$ holds after one step
- $\blacktriangleright E \models \langle \rangle \texttt{tt} \land [-](\langle \rangle \texttt{tt} \land [-](\langle \rangle \texttt{tt} \land [-a]\texttt{ff}))$

Process	Formula	Y/N
	$\langle a \rangle \langle b \rangle$ tt	
	$\langle a \rangle [b] ff$	
a.0 + a.b.0	$[a]\langle b angle tt$	
	[a][b]ff	
	$\langle a \rangle$ tt	
(a.0 ā.0)	$\langle au angle$ tt	
	$\langle a \rangle \langle \tau \rangle$ tt	
	$\langle a \rangle$ tt	
$(a.0 \overline{a}.0) a$	$\langle au angle$ tt	
	$\langle a \rangle \langle \tau \rangle tt$	

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 りへぐ

Negation

HML can be extended with a negation operator \neg having the semantics: $E \models \neg \Phi$ iff $E \not\models \Phi$

Negation

HML can be extended with a negation operator \neg having the semantics: $E \models \neg \Phi$ iff $E \not\models \Phi$ Negation is redundant in the following sense: For every formula Φ of HML there is a formula Φ^c such that for every process E

 $E \models \Phi^c$ iff $E \not\models \Phi$

|▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ | 臣|||の�@

Negation

HML can be extended with a negation operator \neg having the semantics: $E \models \neg \Phi$ iff $E \not\models \Phi$

Negation is redundant in the following sense: For every formula Φ of HML there is a formula Φ^c such that for every process *E*

 $E \models \Phi^c$ iff $E \not\models \Phi$

 Φ^c is inductively defined as follows:

 $\begin{array}{rcl} \mathtt{t}\mathtt{t}^c &=& \mathtt{f}\mathtt{f}\\ \mathtt{f}\mathtt{f}^c &=& \mathtt{t}\mathtt{t}\\ (\Phi_1 \wedge \Phi_2)^c &=& \Phi_1^c \vee \Phi_2^c\\ (\Phi_1 \vee \Phi_2)^c &=& \Phi_1^c \wedge \Phi_2^c\\ ([K]\Phi)^c &=& \langle K \rangle \Phi^c\\ (\langle K \rangle \Phi)^c &=& [K]\Phi^c \end{array}$

Proposition: For every process *F* and HML-formula Φ :

 $F \models \Phi^c$ iff $F \not\models \Phi$.

Proof: By induction on the structure of Φ

Proposition: For every process *F* and HML-formula Φ :

 $F \models \Phi^c \text{ iff } F \not\models \Phi$.

・ キャット (日本) (日本) (日本) (日本)

Proposition: For every process *F* and HML-formula Φ :

 $F \models \Phi^c$ iff $F \not\models \Phi$.

Proof: By induction on the structure of Φ Basis: $\Phi = tt$ and $\Phi = ff$. Trivial. **Proposition**: For every process *F* and HML-formula Φ :

 $F \models \Phi^c$ iff $F \not\models \Phi$.

Proof: By induction on the structure of Φ Basis: $\Phi = tt$ and $\Phi = ff$. Trivial. Induction step: **Proposition**: For every process *F* and HML-formula Φ :

 $F \models \Phi^c \text{ iff } F \not\models \Phi$.

 $\begin{array}{ll} \mbox{Proof:} & \mbox{By induction on the structure of } \Phi \\ \mbox{Basis:} & \mbox{$\Phi = tt$ and $\Phi = ff$. Trivial.} \\ \mbox{Induction step:} \\ \mbox{Case $\Phi = \Phi_1 \land \Phi_2$} \end{array}$

 $E \vdash (\Phi \land \Phi_{\bullet})^{c}$

$$F \models (\Phi_1 \land \Phi_2)$$

iff $F \models \Phi_1^c \lor \Phi_2^c$
iff $F \models \Phi_1^c$ or $F \models \Phi_2^c$ (by clause for \lor)
iff $F \not\models \Phi_1$ or $F \not\models \Phi_2$ (by i.h.)
iff $F \not\models \Phi_1 \land \Phi_2$ (by clause for \land).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Realisability, validity, equivalence

Case $\Phi = [K]\Phi_1$.

 $\begin{array}{ll} F \models ([K]\Phi_1)^c \\ \text{iff} & F \models \langle K \rangle \Phi_1^c \\ \text{iff} & \exists G. \exists a \in K. F \xrightarrow{a} G \text{ and } G \models \Phi_1^c \\ \text{iff} & \exists G. \exists a \in K. F \xrightarrow{a} G \text{ and } G \not\models \Phi_1 \\ \text{iff} & F \not\models [K]\Phi_1 \end{array}$ (by i.h.)

 A formula is satisfiable (or realisable) if some process satisfies it.

Realisability, validity, equivalence

Realisability, validity, equivalence

- ► A formula is satisfiable (or realisable) if some process satisfies it.
- ► A formula is unsatisfiable if no process satisfies it.

- ► A formula is satisfiable (or realisable) if some process satisfies it.
- ► A formula is unsatisfiable if no process satisfies it.
- ► A formula is valid if all processes satisfy it.

- ► A formula is satisfiable (or realisable) if some process satisfies it.
- ► A formula is unsatisfiable if no process satisfies it.
- ► A formula is valid if all processes satisfy it.
- ► Two formulas are equivalent if they are satisfied by exactly the same processes

Exercise

Are the following statements true?

				Y/N
lf	Φ valid	then	Φ satisfiable	
lf	Φ satisfiable	then	Φ^c unsatisfiable	
lf	Φ valid	then	Φ^c unsatisfiable	
lf	Φ unsatisfiable	then	Φ^c valid	

Exercise

Let \rightarrow be the implies connective whose definition is

$$\Phi \to \Psi \stackrel{\mathrm{def}}{=} \Phi^{\mathsf{c}} \vee \Psi.$$

Are the following statements true?

		Y/N
If $(\Phi \rightarrow \Psi)$ valid and Φ valid	then Ψ valid	
If $(\Phi ightarrow \Psi)$ satisfiable and Φ satisfiable	then Ψ satisfiable	
If $(\Phi \rightarrow \Psi)$ valid and Φ satisfiable	then Ψ satisfiable	

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Exercise

Which of the following are valid, V, unsatisfiable, U, or neither, N?

	V	U	N		
$\Phi \to \neg \Phi$					
$\neg \Phi \to \Phi$					
$\Phi ightarrow \left(\Psi ightarrow \Phi ight)$					
$\Phi \to \left(\Phi \to \Psi \right)$					
$\langle a \rangle$ tt \wedge [a]ff					
$\langle a \rangle [b] (\langle a \rangle tt \land [a] ff)$					
$\langle a \rangle [b] (\langle a \rangle tt \land [a] ff) \land [-] \langle b \rangle tt$					
$\langle a \rangle [b] (\langle a \rangle tt \land [a] ff) \land [-] \langle - \rangle tt$					
$\langle \mathtt{a} \rangle (\Phi \lor \Psi) ightarrow (\langle \mathtt{a} angle \Phi \lor \langle \mathtt{a} angle \Psi)$					
$(\langle a \rangle \Phi \wedge \langle a \rangle \Psi) \rightarrow \langle a \rangle (\Phi \wedge \Psi)$					
$[\mathtt{a}](\Phi \to \Psi) \to ([\mathtt{a}]\Phi \to [\mathtt{a}]\Psi)$	• 🗆 🕨	<∂>	(1) (三)	◆ 差 ▶	ł