Modal (Hennessy-Milner) logic: syntax

. . ¢ZZ:tt’ff|¢1A¢2‘¢1V¢2|[K]¢|<K>¢
Communication and Concurrency

A formula can be
Lecture 5

Colin Stirling (cps)
School of Informatics

8th October 2012

Modal (Hennessy-Milner) logic: syntax Modal (Hennessy-Milner) logic: syntax
b =tt | ff | (OO | $; VvV O, | [K]q) | <K>¢ $ =ttt | ff | (OO | (OTIAVE O | [K]q) | <K>¢
A formula can be A formula can be
» the constant true formula tt » the constant true formula tt
» the constant false formula ff, » the constant false formula ££,

» a conjunction of formulas ®; A ,

» a disjunction of formulas ®; V &5,

Modal (Hennessy-Milner) logic: syntax

dr=tt |ff | D ADy | DV Dy | [K]D | (K)D
A formula can be

the constant true formula tt

the constant false formula £f,

>
>
» a conjunction of formulas ®1 A ®»
» a disjunction of formulas ®; V &5,
>

a formula [K]®, where K is any set of actions, read as "box
K ®", or “for all K-derivatives ¢,”

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E
satisfies @, denoted by E = ®, or it doesn't, denoted by E (~ ®.

» EE=tt E - ff

Modal (Hennessy-Milner) logic: syntax

=ttt |[ff [P ADy | PV Dy | [K]P | (K)D
A formula can be
the constant true formula tt
the constant false formula £f,

a conjunction of formulas ®; A ®,

a disjunction of formulas ®; V &5,

vV v.v. v Yy

a formula [K]®, where K is any set of actions, read as "box
K ®", or “for all K-derivatives ¢,"

a formula (K)®, where K is any set of actions, read as
“diamond K ®", or “for some K-derivative ®."

v

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula . Either E
satisfies @, denoted by E = ®, or it doesn't, denoted by E (~ ®.
» EE=tt E [~ ff
» EEOAVIffEE®and EEV
» EEOVVIffEEdor EEV

Modal (Hennessy-Milner) logic: semantics Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E We define when a process E satisfies a formula . Either E
satisfies @, denoted by E = ®, or it doesn't, denoted by E (£~ ®. satisfies @, denoted by E = ®, or it doesn't, denoted by E (£~ ®.
» E=tt E P £f » E=tt Eff
>» EEOANVIffEE®and EEV » EEOANVIffEE®and EEWV
» EEOVVIffEE®or EEV » EEOVVIffEE®or EEV
» EE[K|®iffYFe{E : E-5F andac K}. FE©® » EE[K|®iffYFe{E' : E-5F andac K}. F=®
» EE(K)®iffIFe{E : E->E andac K}. FE®
Modal (Hennessy-Milner) logic: semantics Modal (Hennessy-Milner) logic: semantics
We define when a process E satisfies a formula ®. Either E We define when a process E satisfies a formula ®. Either E
satisfies ®, denoted by E = ®, or it doesn't, denoted by E [~ ®. satisfies ®, denoted by E = ®, or it doesn't, denoted by E [~ ®.
» E=tt E P £f » E=tt E£f
» EEOAVIffFEE®and EEV » EEOAVIffFEE®and EEV
» EEOVVIffEE®r EEV » EEOVVIffEEdor EEV
» E=[KI®iffYFe{E : E-25E andac K}. F=o¢ » E=[K|®iffVFe{E : E-25E andac K}. FE®
» EE (K)o iffIFe{E : E-E andac K}. FE® » EE(K)Oiff3IFe{E : E- E andac K}. FE®
» A process E has the property [K]® if every process which E » A process E has the property [K]|® if every process which E
evolves to after carrying out any action in K has the property evolves to after carrying out any action in K has the property
O} O}
> A process E satisfies (K)® if E can become a process that

satisfies @ by carrying out an action in K

Examples

» E = (tick)tt
E can do a tick

Examples

» E = (tick)tt
E can do a tick
» E = (tick)(tock)tt
E can do a tick and then a tock

» E | ({tick,tock})tt
E can do a tick or a tock

Examples

| 2

>

E = (tick)tt

E can do a tick

E = (tick)(tock)tt

E can do a tick and then a tock

Examples

v

v

v

v

E = (tick)tt

E can do a tick

E = (tick)(tock)tt

E can do a tick and then a tock
E = ({tick,tock})tt

E can do a tick or a tock

E = [tick]|ff

E cannot do a tick

Examples Examples

» E = (tick)tt » E = (tick)tt
E can do a tick E can do a tick
» E | (tick)(tock)tt > E = (tick)(tock)tt
E can do a tick and then a tock E can do a tick and then a tock
» E | ({tick,tock})tt » E | ({tick,tock})tt
E can do a tick or a tock E can do a tick or a tock
> E |= [tick]ff > E |= [tick]ff
E cannot do a tick E cannot do a tick
» E = (tick)ff » E |= (tick)ff
This is equivalent to ff! This is equivalent to ff!
> E = [tick]tt
This is equivalent to true!
Checking satisfaction Checking satisfaction
c1 Y tick.c1 c1 ¥ tick.c1
Does C1 have the property: [tick|((tick)tt A [tock]ff) 7 Does C1 have the property: [tick]((tick)tt A [tock|ff) ?

> Cl = [tick]((tick)tt A [tock]|ff)

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) 7

» Cl = [tick]({tick)tt A [tock]|ff)
> iff VF € {E : C1 2% E}. F |= (tick)tt A [tock]ff

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) 7

» Cl = [tick]((tick)tt A [tock]|ff)
> iff VF € {E : C1 2% E}. F |= (tick)tt A [tock]ff
» iff C1 = (tick)tt A [tock]ff

» iff C1 = (tick)tt and C1 |~ [tock]ff

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick]((tick)tt A [tock|ff) ?
> Cl = [tick]({tick)tt A [tock]|ff)
> iff VF € {E : C1 2% E}. F = (tick)tt A [tock]ff
» iff C1 = (tick)tt A [tock]ff

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]((tick)tt A [tock|ff) ?
> Cl = [tick]((tick)tt A [tock]|ff)

tick

» iff VF € {E : C1L — E}. F = (tick)tt A [tock|ff
» iff CL = (tick)tt A [tock]ff
» iff C1 = (tick)tt and C1 |= [tock]|ff

tick

» iff 3F € {E : C1 — E} and C1 = [tock|ff

Checking satisfaction

Does C1 have the property: [tick|((tick)tt A [tock]ff) 7

>

c1 ¥ tick.c1

Cl = [tick]({tick)tt A [tock]ff)

> iff VF € {E : C1 2% E}. F |= (tick)tt A [tock]ff
» iff C1 = (tick)tt A [tock]ff
» iff C1 = (tick)tt and Cl |= [tock]ff

tick

» iff 3F € {E : C1 — E} and C1 = [tock|ff
» iff 3F € {C1} and C1 = [tock]|ff

Checking satisfaction

Does C1 have the property: [tick|((tick)tt A [tock]ff) 7

>

c1 % tick.c1

Cl = [tick]((tick)tt A [tock]ff)

tick

» iff YVF € {E : C1 = E}. F = (tick)tt A [tock]|ff
» iff C1 = (tick)tt A [tock]ff
» iff C1 = (tick)tt and C1 |~ [tock]ff

tick

» iff 3F € {E : C1 = E} and C1 |= [tock]ff
» iff 3F € {C1} and C1 = [tock]ff
» iff C1 = [tock]|ff

tock

iff {£:CLYEE} =10

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick]((tick)tt A [tock|ff) ?

>

Cl = [tick]({tick)tt A [tock]ff)

> iff VF € {E : C1 2% E}. F = (tick)tt A [tock]ff
» iff C1 = (tick)tt A [tock]ff

iff C1 = (tick)tt and C1 = [tock]|ff

tick

» iff 3F € {E : C1 — E} and C1 = [tock|ff
» iff 3F € {C1} and C1 = [tock]|ff
> iff C1 = [tock|ff

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]((tick)tt A [tock|ff) ?

>

Cl = [tick]((tick)tt A [tock]ff)

tick

» iff VF € {E : C1L — E}. F = (tick)tt A [tock|ff
» iff CL = (tick)tt A [tock]ff
» iff C1 = (tick)tt and C1 |= [tock]|ff

tick

» iff 3F € {E : C1 — E} and C1 = [tock|ff
» iff 3F € {C1} and C1 = [tock]|ff
» iff C1 = [tock|ff

tock

> iff {E: cLE% E) — ¢
> iff) =10

Syntactic sugar for sets of actions

Let A be a universal set of actions including 7.

We write

> ai,...,ap for {a1,...,an}

Syntactic sugar for sets of actions

Let A be a universal set of actions including 7.

We write
> aj,...,a, for {a1,...,an}
» — for the set A
» —K for the set A— K

Syntactic sugar for sets of actions

Let A be a universal set of actions including 7.
We write

> ai,...,a, for {a1,...,an}
> — for the set A

Syntactic sugar for sets of actions

Let A be a universal set of actions including 7.
We write

> aj,...,a, for {a1,...,ap}
> — for the set A

» —K fortheset A— K

>

—a1,...,ap for A—{a1,...,an}

More examples More examples

> E = [-]ff > E |= [-]ff

» E is deadlocked, i.e., it cannot execute any action

More examples More examples
> E = [-]ff > E = [-]ff
» E is deadlocked, i.e., it cannot execute any action » E is deadlocked, i.e., it cannot execute any action
> E = (—)tt > E = (—)tt
» E can execute some action

More examples More examples

> E = [-]ff > E = [-]ff
» E is deadlocked, i.e., it cannot execute any action » E is deadlocked, i.e., it cannot execute any action
> Ef= ()t > E b (-)te
» E can execute some action » E can execute some action
> E = (—)tt A[—a]ff > E = (—)tt A [—a|ff
» a must happen next; something can happen, and nothing but
a can happen
More examples More examples
> E = [-]ff > E = [-]ff
» E is deadlocked, i.e., it cannot execute any action » E is deadlocked, i.e., it cannot execute any action
> E = (—)tt > E = (—)tt
» E can execute some action » E can execute some action
> E = (—)tt A[—a]ff > E = (—)tt A [—a]ff
» a must happen next; something can happen, and nothing but » a must happen next; something can happen, and nothing but
a can happen a can happen
> EE () tt A[-]P > EE(—)tt A[—]P

v

® holds after one step

More examples Exercise

Process Formula | Y/N
> E = [-]£f (a)(b)tt
» E is deadlocked, i.e., it cannot execute any action (a)[p]ff
> E|=(-)tt a.0+ab.0 | [a](b)tt
» E can execute some action [a][b]ff
> E = (—)tt A[—a|ff
: : (a)tt
» a must happen next; something can happen, and nothing but
a can happen (a.07.0) | (7)tt
> EE () tt A[-]P (a)(T)tt
» O holds after one step (a)tt
> E (2)te ALt A L))t A[-al££) (20 | 200\ [TF7EE
(a)(T)tt
Negation Negation
HML can be extended with a negation operator — having the HML can be extended with a negation operator — having the
semantics: E = - iff E £ semantics: £ = - iff E o

Negation is redundant in the following sense: For every formula ¢
of HML there is a formula ®€ such that for every process E

El=o° iff Eo

Negation

HML can be extended with a negation operator — having the

semantics: £ = - iff E £

Negation is redundant in the following sense: For every formula ®
of HML there is a formula € such that for every process E

ElEof iff Epo

&€ is inductively defined as follows:

tt€

ffe

(¢1 VAN (DQ)C
((Dl V (DQ)C
(K10)¢
((K)®)*

£f
tt

IAVE S
I
(K)o
[K]®<

Proposition: For every process F and HML-formula &:

FEoCiff Fito.

Proof: By induction on the structure of ®

Proposition: For every process F and HML-formula &:

Fl=oCiff FI£od.

Proposition: For every process F and HML-formula &:

FlEoCiff Fito.

Proof: By induction on the structure of ®
Basis: ® = tt and ® = ££. Trivial.

Proposition: For every process F and HML-formula &: Proposition: For every process F and HML-formula &:

Fl=oCiff FIE®. Fl=oiff FI£o.
Proof: By induction on the structure of ¢ Proof: By induction on the structure of ®
Basis: & = tt and ® = f£f. Trivial. Basis: & = tt and ® = f£f. Trivial.
Induction step: Induction step:

Case ® = o1 A Dy

F): (cbl A q)z)c
iff F oV oS
iff FE®{ or F=®§ (by clause for V)
iff F bﬁ cbl or F bﬁ <D2 (by 1h)
ifft FEdpAdy (by clause for A).

Realisability, validity, equivalence

Case ¢ = [K]P;.
F = ([K]1)© » A formula is satisfiable (or realisable) if some process satisfies
iff F = (K)P§ it.

if 3G.3a€ K.F -5 G and G | &§
iff 3G.3ac K.F 25 Gand G-®; (byih)
iff F - [K]oy

Realisability, validity, equivalence

» A formula is satisfiable (or realisable) if some process satisfies
it.

» A formula is unsatisfiable if no process satisfies it.

Realisability, validity, equivalence

» A formula is satisfiable (or realisable) if some process satisfies
It.

» A formula is unsatisfiable if no process satisfies it.

» A formula is valid if all processes satisfy it.

» Two formulas are equivalent if they are satisfied by exactly the
same processes

Realisability, validity, equivalence

> A formula is satisfiable (or realisable) if some process satisfies
it.

» A formula is unsatisfiable if no process satisfies it.

» A formula is valid if all processes satisfy it.

Exercise

Are the following statements true?

Y/N
If & valid then & satisfiable
If & satisfiable then @€ unsatisfiable
If & valid then &€ unsatisfiable

If & unsatisfiable then @€ valid

Exercise Exercise
Which of the following are valid, V, unsatisfiable, U, or neither, N7?

Let — be the implies connective whose definition is VIUIN
def ¢ -
-V = OV, ——
. ¢ — (V- 9)
Are the following statements true?
d— (- V)
a)tt A |a|ff
VN (a)tt A [a]
. : : (a)[b]({2)tt A [a]£1)
If (& — W) valid and ¢ valid then W valid
— — — (a)[p]((a)tt Afa]ff) A [-](b)tt
If (¢ — W) satisfiable and & satisfiable then W satisfiable
: — — (a)[p]({2)tt Afal£f) A [=](—)tt
If (¢ — V) valid and @ satisfiable then W satisfiable
@)@V V) = ()¢ V (2)V)
(2)® A (2)V) = (2)(®AV)

[al(® — V) — ([a]® — [a]W)

