Modal (Hennessy-Milner) logic: syntax

\[\Phi ::= \text{tt} \mid \text{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [K]\Phi \mid \langle K \rangle \Phi \]

A formula can be

▶ the constant true formula \text{tt}
▶ the constant false formula \text{ff},
▶ a conjunction of formulas \(\Phi_1 \land \Phi_2\)
▶ a disjunction of formulas \(\Phi_1 \lor \Phi_2\),
▶ a formula \([K]\Phi\), where \(K\) is any set of actions, read as "box \(K\ \Phi\)", or "for all \(K\)-derivatives \(\Phi\),"
▶ a formula \(\langle K \rangle \Phi\), where \(K\) is any set of actions, read as "diamond \(K\ \Phi\)", or "for some \(K\)-derivative \(\Phi\)."
Modal (Hennessy-Milner) logic: syntax

\[\Phi ::= \text{tt} \mid \text{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [K] \Phi \mid \langle K \rangle \Phi \]

A formula can be

- the constant true formula tt
- the constant false formula ff,
- a conjunction of formulas \(\Phi_1 \land \Phi_2 \)
- a disjunction of formulas \(\Phi_1 \lor \Phi_2 \),
- a formula \([K] \Phi\), where \(K \) is any set of actions, read as “box \(K \Phi\)”, or “for all \(K\)-derivatives \(\Phi\),”
- a formula \(\langle K \rangle \Phi\), where \(K \) is any set of actions, read as “diamond \(K \Phi\)”, or “for some \(K\)-derivative \(\Phi\).”

Modal (Hennessy-Milner) logic: semantics

We define when a process \(E \) satisfies a formula \(\Phi \). Either \(E \) satisfies \(\Phi \), denoted by \(E \models \Phi \), or it doesn’t, denoted by \(E \not\models \Phi \).

- \(E \models \text{tt} \) \(E \not\models \text{ff} \)
- \(E \models \Phi \) \iff \(E \not\models \Phi \) \iff \(E \models \Phi \land \Psi \) \iff \(E \models \Phi \) and \(E \models \Psi \)
- \(E \models \Phi \lor \Psi \) \iff \(E \models \Phi \) or \(E \models \Psi \)
We define when a process E satisfies a formula Φ. Either E satisfies Φ, denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

- $E \models \top \quad E \not\models \bot$
- $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- $E \models [K]\Phi$ iff $\forall F \in \{E' : E \xrightarrow{a} E'\text{ and } a \in K\}. F \models \Phi$
- $E \models \langle K \rangle \Phi$ iff $\exists F \in \{E' : E \xrightarrow{a} E'\text{ and } a \in K\}. F \models \Phi$

A process E has the property $[K]\Phi$ if every process which E evolves to after carrying out any action in K has the property Φ.

A process E has the property $\langle K \rangle \Phi$ if every process which E evolves to after carrying out any action in K has the property Φ.

A process E satisfies $[K]\Phi$ if E can become a process that satisfies Φ by carrying out an action in K.
Examples

- \(E \models (\text{tick})tt \)
 - \(E \) can do a tick

- \(E \models (\text{tick})(\text{tock})tt \)
 - \(E \) can do a tick and then a tock

- \(E \models \{\text{tick}, \text{tock}\}tt \)
 - \(E \) can do a tick or a tock

- \(E \models [\text{tick}]tt \)
 - \(E \) cannot do a tick

This is equivalent to true!
Examples

- $E \models (\text{tick})tt$
 - E can do a tick

- $E \models (\text{tick})(\text{tock})tt$
 - E can do a tick and then a tock

- $E \models \{\text{tick}, \text{tock}\}tt$
 - E can do a tick or a tock

- $E \models [\text{tick}]ff$
 - E cannot do a tick

- $E \models (\text{tick})ff$
 - This is equivalent to ff!

- $E \models [\text{tick}]tt$
 - This is equivalent to $true$!

Checking satisfaction

$Cl \overset{\text{def}}{=} \text{tick.Cl}$

Does Cl have the property: $[\text{tick}](\text{tick}tt \land [\text{tock}]ff)$?

- $Cl \models [\text{tock}]ff$
 - $iff \exists F \in \{Cl\} \land Cl \models [\text{tock}]ff$
 - $iff Cl \models [\text{tock}]ff$
 - $iff \{E : Cl \text{ tock} \rightarrow E\} = \emptyset$
 - $iff \emptyset = \emptyset$
Checking satisfaction

\[C_l \overset{\text{def}}{=} \text{tick.Cl} \]

Does \(C_l \) have the property: \([\text{tick}](\langle \text{tick} \rangle \text{tt} \land [\text{tock}] \text{ff})\)?

\begin{align*}
& \quad \text{Cl} \models [\text{tick}](\langle \text{tick} \rangle \text{tt} \land [\text{tock}] \text{ff}) \\
\iff & \quad \exists F \in \{ C_l \overset{\text{tick}}{\to} E \}. F \models \langle \text{tick} \rangle \text{tt} \land [\text{tock}] \text{ff} \\
\iff & \quad \text{Cl} \models [\text{tock}] \text{ff} \\
\iff & \quad \{ E : C_l \overset{\text{tock}}{\to} E \} = \emptyset \\
\iff & \quad \emptyset = \emptyset
\end{align*}

Checking satisfaction

\[C_l \overset{\text{def}}{=} \text{tick.Cl} \]

Does \(C_l \) have the property: \([\text{tick}](\langle \text{tick} \rangle \text{tt} \land [\text{tock}] \text{ff})\)?

\begin{align*}
& \quad \text{Cl} \models [\text{tick}](\langle \text{tick} \rangle \text{tt} \land [\text{tock}] \text{ff}) \\
\iff & \quad \exists F \in \{ C_l \overset{\text{tick}}{\to} E \}. F \models \langle \text{tick} \rangle \text{tt} \land [\text{tock}] \text{ff} \\
\iff & \quad \text{Cl} \models [\text{tock}] \text{ff} \\
\iff & \quad \{ E : C_l \overset{\text{tock}}{\to} E \} = \emptyset \\
\iff & \quad \emptyset = \emptyset
\end{align*}
Checking satisfaction

\(Cl \overset{\text{def}}{=} \text{tick.Cl} \)

Does \(Cl \) have the property: \([\text{tick}](\langle \text{tick} \rangle \text{tt} \land \langle \text{tock} \rangle \text{ff}) \) ?

\[\begin{align*}
\text{Cl} & \models [\text{tick}](\langle \text{tick} \rangle \text{tt} \land \langle \text{tock} \rangle \text{ff}) \\
\text{iff} & \exists F \in \{ \text{Cl} \} \text{ and } \text{Cl} \models [\text{tock}]\text{ff} \\
\text{iff} & \text{Cl} \models [\text{tock}]\text{ff} \\
\text{iff} & \{ E : \text{Cl tock} \rightarrow E \} = \emptyset \\
\text{iff} & \emptyset = \emptyset
\end{align*} \]
Syntactic sugar for sets of actions

Let A be a universal set of actions including τ.
We write

- a_1, \ldots, a_n for $\{a_1, \ldots, a_n\}$
- \neg for the set A
- $\neg K$ for the set $A - K$
More examples

- $E \models \preceq \neg \mathbf{f}\mathbf{f}$
- $E \models \neg \mathbf{f}\mathbf{f}$
- E is deadlocked, i.e., it cannot execute any action

- $E \models \preceq \neg \mathbf{t}\mathbf{t}$
- E can execute some action

- $E \models \preceq \neg \mathbf{t}\mathbf{t} \land \neg \mathbf{a}\mathbf{f}\mathbf{f}$
- E can execute some action

- $E \models \preceq \neg \mathbf{t}\mathbf{t} \land \neg \Phi$
- Φ holds after one step

- $E \models \preceq \neg \mathbf{t}\mathbf{t} \land \neg \left(\neg \mathbf{t}\mathbf{t} \land \neg \left(\neg \mathbf{t}\mathbf{t} \land \neg \mathbf{a}\mathbf{f}\mathbf{f} \right) \right)$
- E can execute some action
More examples

- $E \models [\neg]ff$
- E is deadlocked, i.e., it cannot execute any action
- $E \models \langle\neg\rangle tt$
- E can execute some action
- $E \models \langle\neg\rangle tt \land [\neg a] ff$
- a must happen next; something can happen, and nothing but a can happen
- $E \models \langle\neg\rangle tt \land [\neg \Phi]$
- Φ holds after one step

More examples

- $E \models [\neg]ff$
- E is deadlocked, i.e., it cannot execute any action
- $E \models \langle\neg\rangle tt$
- E can execute some action
- $E \models \langle\neg\rangle tt \land [\neg a] ff$
- a must happen next; something can happen, and nothing but a can happen
- $E \models \langle\neg\rangle tt \land [\neg \Phi]$
- Φ holds after one step
More examples

- \(E \models [\neg]ff \)
- \(E \) is deadlocked, i.e., it cannot execute any action
- \(E \models (\neg)tt \)
- \(E \) can execute some action
- \(E \models (\neg)tt \land \neg a \)
- \(a \) must happen next; something can happen, and nothing but \(a \) can happen
- \(E \models (\neg)tt \land \neg \Phi \)
- \(\Phi \) holds after one step
- \(E \models (\neg)tt \land (\neg)tt \land (\neg)tt \land (\neg)a \)ff

Negation

HML can be extended with a negation operator \(\neg \) having the semantics: \(E \models \neg \Phi \) iff \(E \not\models \Phi \)

Exercise

<table>
<thead>
<tr>
<th>Process</th>
<th>Formula</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a.0 + a.b.0)</td>
<td>(\langle a \rangle \langle b \rangle tt)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\langle a \rangle \langle b \rangle ff)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\langle a \rangle tt)</td>
<td></td>
</tr>
<tr>
<td>((a.0</td>
<td>\bar a.0))</td>
<td>(\langle a \rangle tt)</td>
</tr>
<tr>
<td></td>
<td>(\langle a \rangle \tau tt)</td>
<td></td>
</tr>
<tr>
<td>((a.0</td>
<td>\bar a.0) {a})</td>
<td>(\langle a \rangle \tau tt)</td>
</tr>
</tbody>
</table>

Negation

HML can be extended with a negation operator \(\neg \) having the semantics: \(E \models \neg \Phi \) iff \(E \not\models \Phi \)

Negation is redundant in the following sense: For every formula \(\Phi \) of HML there is a formula \(\Phi^c \) such that for every process \(E \)

\[
E \models \Phi^c \quad \text{iff} \quad E \not\models \Phi
\]
Negation

HML can be extended with a negation operator \(\neg \) having the semantics:

\[
E \models \neg \Phi \iff E \not\models \Phi
\]

Negation is redundant in the following sense: For every formula \(\Phi \) of HML there is a formula \(\Phi^c \) such that for every process \(E \)

\[
E \models \Phi^c \iff E \not\models \Phi
\]

\(\Phi^c \) is inductively defined as follows:

\[
\begin{align*}
\text{tt}^c &= \text{ff} \\
\text{ff}^c &= \text{tt} \\
(\Phi_1 \land \Phi_2)^c &= \Phi_1^c \lor \Phi_2^c \\
(\Phi_1 \lor \Phi_2)^c &= \Phi_1^c \land \Phi_2^c \\
([K] \Phi)^c &= \langle K \rangle \Phi^c \\
(\langle K \rangle \Phi)^c &= [K] \Phi^c
\end{align*}
\]

Proposition: For every process \(F \) and HML-formula \(\Phi \):

\[
F \models \Phi^c \iff F \not\models \Phi
\]

Proof: By induction on the structure of \(\Phi \)

Basis: \(\Phi = \text{tt} \) and \(\Phi = \text{ff} \). Trivial.
Proposition: For every process F and HML-formula Φ:

\[F \models \Phi^c \text{ iff } F \not\models \Phi. \]

Proof: By induction on the structure of Φ

Basis: $\Phi = \tt$ and $\Phi = \ff$. Trivial.

Induction step:

Case $\Phi = \Phi_1 \land \Phi_2$

\[F \models (\Phi_1 \land \Phi_2)^c \]
\[\text{iff } F \models \Phi_1^c \lor \Phi_2^c \]
\[\text{iff } F \not\models \Phi_1 \text{ or } F \not\models \Phi_2 \quad (\text{by clause for } \lor) \]
\[\text{iff } \exists G. \exists a \in \mathcal{K}. F \xrightarrow{a} G \text{ and } G \models \Phi_1 \]
\[\text{iff } \exists G. \exists a \in \mathcal{K}. F \xrightarrow{a} G \text{ and } G \not\models \Phi_1 \quad (\text{by i.h.}) \]
\[\text{iff } F \not\models \mathcal{K}\Phi_1 \quad (\text{by clause for } \land). \]

Case $\Phi = [\mathcal{K}\Phi_1]$

\[F \models ([\mathcal{K}\Phi_1])^c \]
\[\text{iff } F \models \langle \mathcal{K} \rangle \Phi_1^c \]
\[\text{iff } \exists G. \exists a \in \mathcal{K}. F \xrightarrow{a} G \text{ and } G \models \Phi_1^c \]
\[\text{iff } \exists G. \exists a \in \mathcal{K}. F \xrightarrow{a} G \text{ and } G \not\models \Phi_1 \quad (\text{by i.h.}) \]
\[\text{iff } F \not\models [\mathcal{K}\Phi_1] \]

Realisability, validity, equivalence

- A formula is satisfiable (or realisable) if some process satisfies it.
A formula is satisfiable (or realisable) if some process satisfies it.

A formula is unsatisfiable if no process satisfies it.

A formula is valid if all processes satisfy it.

Two formulas are equivalent if they are satisfied by exactly the same processes.

Exercise

Are the following statements true?

<table>
<thead>
<tr>
<th>Statement</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Φ valid then Φ satisfiable</td>
<td></td>
</tr>
<tr>
<td>If Φ satisfiable then Φ^c unsatisfiable</td>
<td></td>
</tr>
<tr>
<td>If Φ valid then Φ^c unsatisfiable</td>
<td></td>
</tr>
<tr>
<td>If Φ unsatisfiable then Φ^c valid</td>
<td></td>
</tr>
</tbody>
</table>
Exercise

Let → be the implies connective whose definition is

\[\Phi \rightarrow \Psi \overset{\text{def}}{=} \Phi^c \lor \Psi. \]

Are the following statements true?

<table>
<thead>
<tr>
<th></th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (\Phi \rightarrow \Psi) valid and \Phi valid then \Psi valid</td>
<td></td>
</tr>
<tr>
<td>If (\Phi \rightarrow \Psi) satisfiable and \Phi satisfiable then \Psi satisfiable</td>
<td></td>
</tr>
<tr>
<td>If (\Phi \rightarrow \Psi) valid and \Phi satisfiable then \Psi satisfiable</td>
<td></td>
</tr>
</tbody>
</table>

Exercise

Which of the following are valid, V, unsatisfiable, U, or neither, N?

<table>
<thead>
<tr>
<th></th>
<th>V</th>
<th>U</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Phi \rightarrow \neg \Phi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\neg \Phi \rightarrow \Phi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Phi \rightarrow (\Psi \rightarrow \Phi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Phi \rightarrow (\Phi \rightarrow \Psi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\langle a \rangle \text{tt} \land \langle a \rangle \text{ff}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\langle a \rangle \text{tt} \land \langle a \rangle \text{ff}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\langle a \rangle \text{tt} \land \langle a \rangle \text{ff} \land \neg \langle b \rangle \text{tt}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\langle a \rangle \text{tt} \land \langle a \rangle \text{ff} \land \neg \langle a \rangle \text{tt}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\langle a \rangle (\Phi \lor \Psi) \rightarrow (\langle a \rangle \Phi \lor \langle a \rangle \Psi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\langle a \rangle \Phi \land \langle a \rangle \Psi) \rightarrow \langle a \rangle (\Phi \land \Psi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\langle a \rangle (\Phi \rightarrow \Psi) \rightarrow ([a] \Phi \rightarrow [a] \Psi)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>