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Syntactic sugar for sets of actions

Let A be a universal set of actions including 7.
We write

> aj,...,a, for {a1,...,ap}
> — for the set A

» —K fortheset A— K

>

—a1,...,ap for A—{a1,...,an}
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More examples More examples
> E = [-]ff > E = [-]ff
» E is deadlocked, i.e., it cannot execute any action » E is deadlocked, i.e., it cannot execute any action
> E = (—)tt > E = (—)tt
» E can execute some action » E can execute some action
> E = (—)tt A[—a]ff > E = (—)tt A [—a]ff
» a must happen next; something can happen, and nothing but » a must happen next; something can happen, and nothing but
a can happen a can happen
> EE () tt A[-]P > EE(—)tt A[—]P

v

® holds after one step



More examples Exercise

Process Formula | Y/N
> E = [-]£f (a)(b)tt
» E is deadlocked, i.e., it cannot execute any action (a)[p]ff
> E|=(-)tt a.0+ab.0 | [a](b)tt
» E can execute some action [a][b]ff
> E = (—)tt A[—a|ff
: : (a)tt
» a must happen next; something can happen, and nothing but
a can happen (a.07.0) | (7)tt
> EE () tt A[-]P (a)(T)tt
» O holds after one step (a)tt
> E (2)te ALt A L))t A[-al££) (20 | 200\ [TF7EE
(a)(T)tt
Negation Negation
HML can be extended with a negation operator — having the HML can be extended with a negation operator — having the
semantics: E = - iff E £ semantics: £ = - iff E o

Negation is redundant in the following sense: For every formula ¢
of HML there is a formula ®€ such that for every process E

El=o° iff Eo



Negation

HML can be extended with a negation operator — having the

semantics: £ = - iff E £

Negation is redundant in the following sense: For every formula ®
of HML there is a formula € such that for every process E

ElEof iff Epo

&€ is inductively defined as follows:

tt€

ffe

(¢1 VAN (DQ)C
((Dl V (DQ)C
(K10)¢
((K)®)*

£f
tt

IAVE S
I
(K)o
[K]®<

Proposition: For every process F and HML-formula &:

FEoCiff Fito.

Proof: By induction on the structure of ®

Proposition: For every process F and HML-formula &:

Fl=oCiff FI£od.

Proposition: For every process F and HML-formula &:

FlEoCiff Fito.

Proof: By induction on the structure of ®
Basis: ® = tt and ® = ££. Trivial.



Proposition: For every process F and HML-formula &: Proposition: For every process F and HML-formula &:

Fl=oCiff FIE®. Fl=oiff FI£o.
Proof: By induction on the structure of ¢ Proof: By induction on the structure of ®
Basis: & = tt and ® = f£f. Trivial. Basis: & = tt and ® = f£f. Trivial.
Induction step: Induction step:

Case ® = o1 A Dy

F ): (cbl A q)z)c
iff F oV oS
iff FE®{ or F=®§ (by clause for V)
iff F bﬁ cbl or F bﬁ <D2 (by 1h)
ifft FEdpAdy (by clause for A).

Realisability, validity, equivalence

Case ¢ = [K]P;.
F = ([K]1)© » A formula is satisfiable (or realisable) if some process satisfies
iff F = (K)P§ it.

if 3G.3a€ K.F -5 G and G | &§
iff 3G.3ac K.F 25 Gand G-®; (byih)
iff F - [K]oy



Realisability, validity, equivalence

» A formula is satisfiable (or realisable) if some process satisfies
it.

» A formula is unsatisfiable if no process satisfies it.

Realisability, validity, equivalence

» A formula is satisfiable (or realisable) if some process satisfies
It.

» A formula is unsatisfiable if no process satisfies it.

» A formula is valid if all processes satisfy it.

» Two formulas are equivalent if they are satisfied by exactly the
same processes

Realisability, validity, equivalence

> A formula is satisfiable (or realisable) if some process satisfies
it.

» A formula is unsatisfiable if no process satisfies it.

» A formula is valid if all processes satisfy it.

Exercise

Are the following statements true?

Y/N
If & valid then & satisfiable
If & satisfiable then @€ unsatisfiable
If & valid then &€ unsatisfiable

If & unsatisfiable then @€ valid




Exercise Exercise
Which of the following are valid, V, unsatisfiable, U, or neither, N7?

Let — be the implies connective whose definition is VIUIN
def ¢ -
-V = OV, ——
. ¢ — (V- 9)
Are the following statements true?
d— (- V)
a)tt A |a|ff
VN (a)tt A [a]
. : : (a)[b]({2)tt A [a]£1)
If (& — W) valid and ¢ valid then W valid
— — — (a)[p]((a)tt Afa]ff) A [-](b)tt
If (¢ — W) satisfiable and & satisfiable then W satisfiable
: — — (a)[p]({2)tt Afal£f) A [=](—)tt
If (¢ — V) valid and @ satisfiable then W satisfiable
@)@V V) = ()¢ V (2)V)
(2)® A (2)V) = (2)(®AV)

[al(® — V) — ([a]® — [a]W)



