Concurrent composition: $E \mid F$

$$R(| \operatorname{com}) \quad \frac{E \mid F \xrightarrow{\tau} E' \mid F'}{E \xrightarrow{a} E' \quad F \xrightarrow{\overline{a}} F'}$$
$$R(|) \quad \frac{E \mid F \xrightarrow{a} E' \mid F}{E \xrightarrow{a} E'} \qquad \frac{E \mid F \xrightarrow{a} E \mid F'}{F \xrightarrow{a} F'}$$

Communication and Concurrency Lecture 2

Colin Stirling (cps)

School of Informatics

23rd September 2013

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▼ めんの

Concurrent composition: $E \mid F$

$$R(|\operatorname{com}) \quad \frac{E \mid F \xrightarrow{\tau} E' \mid F'}{E \xrightarrow{a} E' \quad F \xrightarrow{\overline{a}} F'}$$
$$R(|) \quad \frac{E \mid F \xrightarrow{a} E' \mid F}{E \xrightarrow{a} E'} \quad \frac{E \mid F \xrightarrow{a} E \mid F'}{F \xrightarrow{a} F'}$$

Example: user of a copier

Concurrent composition: $E \mid F$

$$R(| \operatorname{com}) \quad \frac{E \mid F \xrightarrow{\tau} E' \mid F'}{E \xrightarrow{a} E' \quad F \xrightarrow{\overline{a}} F'}$$
$$R(|) \quad \frac{E \mid F \xrightarrow{a} E' \mid F}{E \xrightarrow{a} E'} \quad \frac{E \mid F \xrightarrow{a} E \mid F'}{F \xrightarrow{a} F'}$$

Example: user of a copier

 $\frac{\overbrace{\operatorname{Cop} | \operatorname{User}_{v} \xrightarrow{\tau} \operatorname{\overline{out}}(v).\operatorname{Cop} | \operatorname{User}}{\operatorname{Cop} \xrightarrow{\operatorname{in}(v)} \overline{\operatorname{out}}(v).\operatorname{Cop}} \underbrace{\operatorname{User}_{v} \xrightarrow{\operatorname{\overline{in}}(v)} \operatorname{User}}{\operatorname{in}(x).\overline{\operatorname{out}}(x).\operatorname{Cop} \xrightarrow{\operatorname{in}(v)} \overline{\operatorname{out}}(v).\operatorname{Cop}} \underbrace{\overline{\operatorname{in}}(v).\operatorname{User} \xrightarrow{\operatorname{\overline{in}}(v)} \operatorname{User}}_{\overline{\operatorname{in}}(v).\operatorname{User}} = \operatorname{Occ}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Exercise

$$\frac{\frac{\operatorname{Cop} | (\operatorname{User}_{v1} | \operatorname{User}_{v2}) \xrightarrow{\tau} \overline{\operatorname{out}}(v1).\operatorname{Cop} | (\operatorname{User} | \operatorname{User}_{v2})}{\operatorname{Cop} \xrightarrow{\operatorname{in}(v1)} \overline{\operatorname{out}}(v1).\operatorname{Cop}} \frac{\operatorname{User}_{v1} | \operatorname{User}_{v2} \xrightarrow{\overline{\operatorname{in}}(v1)} \operatorname{User} | \operatorname{User}_{v1}}{\operatorname{User}_{v1} \xrightarrow{\overline{\operatorname{in}}(v1)} \operatorname{User}} \frac{\operatorname{User}_{v1} | \operatorname{User}_{v2} \xrightarrow{\overline{\operatorname{in}}(v1)} \operatorname{User} | \operatorname{User}_{v2}}{\overline{\operatorname{in}}(v1).\operatorname{User}}$$

1. What are the possible initial transitions of

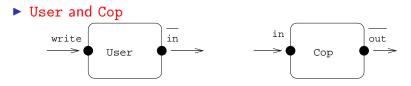
 $Cop | (User_{v1} | User_{v2})$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Exercise

1. What are the possible initial transitions of

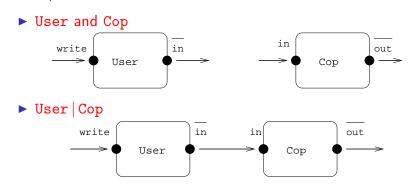
$$Cop | (User_{v1} | User_{v2})$$

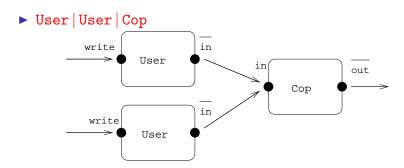

2. Draw the transition graph of Cnt

$$Cnt \stackrel{def}{=} up.(Cnt \mid down.0)$$

And compare it with Ct_0

Flow graphs

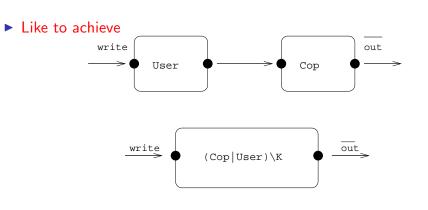

Summarizes potential movement of information flowing into and out of ports.



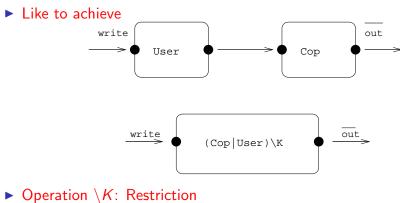
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Flow graphs

Summarizes potential movement of information flowing into and out of ports.



And so on with more users


▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

・ロト・日本・モト・モー ショー ショー

A private copier?

A private copier?

 $K = \{in(v) : v \in D\}$ abbreviate to in

A private copier?

Like to achieve write User Cop cop out cop out out out out

- $K = \{in(v) : v \in D\}$ abbreviate to in
- ▶ (User | Cop)\in

(ロト (個) (E) (E) (E) (O) (O)

Transition rule for $\setminus J$

Assume $\tau \notin J$ and \overline{J} is $\{\overline{a} : a \in J\}$

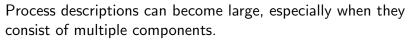
$$\frac{E \setminus J \xrightarrow{a} F \setminus J}{E \xrightarrow{a} F} a \notin J \cup \overline{J}$$

Example

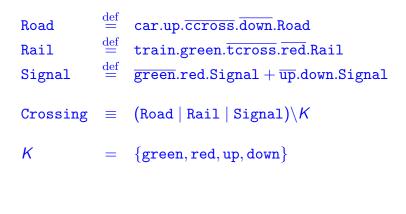
$\frac{(\operatorname{Cop} | \operatorname{User}_v) \backslash \operatorname{in} \stackrel{\tau}{\longrightarrow} (\overline{\operatorname{out}}(v).\operatorname{Cop} | \operatorname{User}) \backslash \operatorname{in}}{\operatorname{Cop} | \operatorname{User}_v \stackrel{\tau}{\longrightarrow} \overline{\operatorname{out}}(v).\operatorname{Cop} | \operatorname{User}}$ $\frac{\overline{\operatorname{Cop} \stackrel{\operatorname{in}(v)}{\longrightarrow} \overline{\operatorname{out}}(v).\operatorname{Cop}}}{\operatorname{in}(x).\overline{\operatorname{out}}(x).\operatorname{Cop} \stackrel{\operatorname{in}(v)}{\longrightarrow} \overline{\operatorname{out}}(v).\operatorname{Cop}} \frac{\operatorname{User}_v \stackrel{\overline{\operatorname{in}}(v)}{\longrightarrow} \operatorname{User}}{\overline{\operatorname{in}}(v)} \operatorname{User}}$

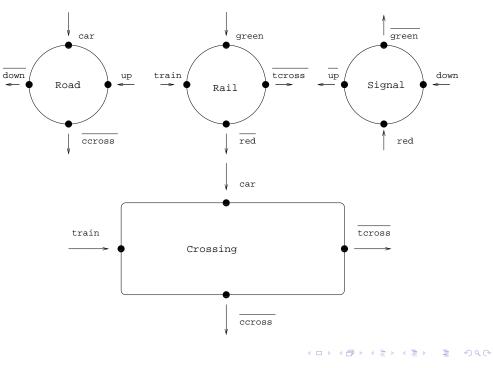
Transition rule for $\setminus J$

Assume $\tau \notin J$ and \overline{J} is $\{\overline{a} : a \in J\}$

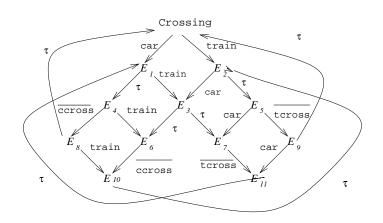

$$\frac{E \setminus J \stackrel{a}{\longrightarrow} F \setminus J}{E \stackrel{a}{\longrightarrow} F} a \notin J \cup \overline{J}$$

Abbreviations


Process descriptions can become large, especially when they consist of multiple components. So $P \equiv F$ means that P abbreviates F


Abbreviations

Flow graphs



So $P \equiv F$ means that P abbreviates F

Transition graph

CCS model of Peterson's solution to mutual exclusion

B1f B1t	$\stackrel{\text{def}}{=}$	birf.Bif + biwf.Bif + biwt.Bit birt.Bit + biwt.Bit + biwf.Bif
B2f B2t	$\stackrel{\text{def}}{=}$ $\stackrel{\text{def}}{=}$	$\overline{b2rf}.B2f + b2wf.B2f + b2wt.B2t$ $\overline{b2rt}.B2t + b2wt.B2t + b2wf.B2f$
K1 K2	$\stackrel{\text{def}}{=}$ $\stackrel{\text{def}}{=}$	$\overline{kr1}$.K1 + kw1.K1 + kw2.K2 $\overline{kr2}$.K2 + kw2.K2 + kw1.K1
P1 P11 P12	$\stackrel{\text{def}}{=} \\ \stackrel{\text{def}}{=} \\ \stackrel{\text{def}}{=} \\ \end{array}$	b1wt.req1.kw2.P11b2rt.P11 + b2rf.P12 + kr2.P11 + kr1.P12enter1.exit1.b1wf.P1
P2 P21 P22	$\stackrel{\text{def}}{=}$ $\stackrel{\text{def}}{=}$ $\stackrel{\text{def}}{=}$	b2wt.req2.kw1.P21 b1rf.P22 + b1rt.P21 + kr1.P21 + kr2.P22 enter2.exit2.b2wf.P2
Peterson	≡	(P1 P2 K1 B1f B2f)\L L all actions except reqi, enteri and exiti

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Protocol that may lose messages

Sender $\stackrel{\text{def}}{=}$ $in(x).\overline{sm}(x).\text{Sendl}(x)$ Send1(x) $\stackrel{\text{def}}{=}$ $ms.\overline{sm}(x).\text{Sendl}(x) + \text{ok.Sender}$ Medium $\stackrel{\text{def}}{=}$ sm(y).Medl(y)Med1(y) $\stackrel{\text{def}}{=}$ $\overline{mr}(y).\text{Medium} + \tau.\overline{ms}.\text{Medium}$ Receiver $\stackrel{\text{def}}{=}$ $mr(x).\overline{out}(x).\overline{ok}.\text{Receiver}$

 $\texttt{Protocol} ~\equiv~ (\texttt{Sender} \mid \texttt{Medium} \mid \texttt{Receiver}) \backslash \{\texttt{sm},\texttt{ms},\texttt{mr},\texttt{ok}\}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● 今♀⊙