Communication and Concurrency Lecture 16

Colin Stirling (cps)

School of Informatics

14th November 2013

▶ Given: two processes *E* and *F*

- ▶ Given: two processes E and F
- ▶ Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar ?

- ▶ Given: two processes E and F
- ▶ Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- ▶ Assume both T_E and T_F are finite

- ▶ Given: two processes E and F
- ▶ Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- \blacktriangleright Assume both T_E and T_F are finite
- ▶ Observation: whether $E \sim F$ depends only on T_E and T_F

- ▶ Given: two processes E and F
- ▶ Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- \blacktriangleright Assume both T_E and T_F are finite
- ▶ Observation: whether $E \sim F$ depends only on T_E and T_F
- Restrict relations to subsets of S × S, where S ⊆ S_E ∪ S_F. Notice that S is finite
- Outline of the algorithm:

- ▶ Given: two processes E and F
- ▶ Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- \blacktriangleright Assume both T_E and T_F are finite
- ▶ Observation: whether $E \sim F$ depends only on T_E and T_F
- Restrict relations to subsets of S × S, where S ⊆ S_E ∪ S_F. Notice that S is finite
- Outline of the algorithm:
 - ▶ Compute $\sim \subseteq S \times S$.

- ▶ Given: two processes E and F
- ▶ Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- \blacktriangleright Assume both T_E and T_F are finite
- ▶ Observation: whether $E \sim F$ depends only on T_E and T_F
- ▶ Restrict relations to subsets of $S \times S$, where $S \subseteq S_E \cup S_F$. Notice that S is finite
- Outline of the algorithm:
 - ▶ Compute $\sim \subseteq S \times S$.
 - ▶ Check if $(E, F) \in \sim$.

▶ Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.

- ▶ Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- ▶ For each $n \ge 0$, the relation \sim_n between pairs of processes is inductively defined as follows:

- ▶ Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- ▶ For each $n \ge 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
- ▶ $E \sim_0 F$ for all E and F.

- ▶ Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- ▶ For each $n \ge 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
- ▶ $E \sim_0 F$ for all E and F.
- ▶ $E \sim_{n+1} F$ if and only if for every action a,

- ▶ Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- ▶ For each $n \ge 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
- ▶ $E \sim_0 F$ for all E and F.
- ▶ $E \sim_{n+1} F$ if and only if for every action a,
 - ▶ if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $E' \sim_n F'$, and

- ▶ Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- ▶ For each $n \ge 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
- ▶ $E \sim_0 F$ for all E and F.
- ▶ $E \sim_{n+1} F$ if and only if for every action a,
 - ▶ if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $E' \sim_n F'$, and
 - if $F \stackrel{a}{\longrightarrow} F'$ then $E \stackrel{a}{\longrightarrow} E'$ for some E' such that $E' \sim_n F'$.

- ▶ Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- ▶ For each $n \ge 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
- ▶ $E \sim_0 F$ for all E and F.
- ▶ $E \sim_{n+1} F$ if and only if for every action a,
 - ▶ if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $E' \sim_n F'$, and
 - if $F \stackrel{a}{\longrightarrow} F'$ then $E \stackrel{a}{\longrightarrow} E'$ for some E' such that $E' \sim_n F'$.

$$\begin{array}{cccc}
E & \sim_{n+1} & F \\
\downarrow a & & \downarrow a \\
E' & \sim_n & F'
\end{array}$$

- 1. $\sim_n \supseteq \sim$,
- 2. $\sim_n \supseteq \sim_{n+1}$, and
- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

- 1. $\sim_n \supseteq \sim$,
- 2. $\sim_n \supseteq \sim_{n+1}$, and
- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ Proof: 1. By induction on *n*.

- 1. $\sim_n \supseteq \sim$,
- 2. $\sim_n \supseteq \sim_{n+1}$, and
- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- Proof: 1. By induction on n.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F
- ▶ Step: Let $E \sim F$. We prove $E \sim_{n+1} F$. Let $E \stackrel{a}{\longrightarrow} E'$ be an arbitrary transition of E

- 1. $\sim_n \supseteq \sim$,
- 2. $\sim_n \supseteq \sim_{n+1}$, and
- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- Proof: 1. By induction on n.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F
- ▶ Step: Let $E \sim F$. We prove $E \sim_{n+1} F$. Let $E \xrightarrow{a} E'$ be an arbitrary transition of E. Since $E \sim F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim F'$. By induction hypothesis, $E' \sim_n F'$.

- 1. $\sim_n \supseteq \sim$,
- 2. $\sim_n \supseteq \sim_{n+1}$, and
- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ Proof: 1. By induction on *n*.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F
- ▶ Step: Let $E \sim F$. We prove $E \sim_{n+1} F$. Let $E \xrightarrow{a} E'$ be an arbitrary transition of ESince $E \sim F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim F'$. By induction hypothesis, $E' \sim_n F'$. Similarly we prove that for every transition $F \xrightarrow{a} F'$ of F there is a transition $E \xrightarrow{a} E'$ of E such that $E' \sim_n F'$. By definition of \sim_{n+1} , we have $E \sim_{n+1} F$

▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- ▶ Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- ▶ Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$
- Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$. Let $E \stackrel{a}{\longrightarrow} E'$ be an arbitrary transition of E.

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- ▶ Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$
- Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$. Let $E \stackrel{a}{\longrightarrow} E'$ be an arbitrary transition of E.
- ▶ Since $E \sim_{n+2} F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_{n+1} F'$.

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- ▶ Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$
- Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$. Let $E \stackrel{a}{\longrightarrow} E'$ be an arbitrary transition of E.
- ▶ Since $E \sim_{n+2} F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_{n+1} F'$.
- ▶ By induction hypothesis, $E' \sim_n F'$.

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- ▶ Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$
- Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$. Let $E \stackrel{a}{\longrightarrow} E'$ be an arbitrary transition of E.
- ▶ Since $E \sim_{n+2} F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_{n+1} F'$.
- ▶ By induction hypothesis, $E' \sim_n F'$.
- ▶ Similarly we prove that for every transition $F \xrightarrow{a} F'$ of F there is a transition $E \xrightarrow{a} E'$ of E such that $E' \sim_n F'$. So $E \sim_{n+1} F$.

▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

- ▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.

- ▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.
- ▶ We have $\sim_n \supseteq \sim$ by (1)

- ▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.
- ▶ We have $\sim_n \supseteq \sim$ by (1)
- ▶ To prove $\sim_n \subseteq \sim$, we show that \sim_n is a bisimulation.

- ▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.
- ▶ We have $\sim_n \supseteq \sim$ by (1)
- ▶ To prove $\sim_n \subseteq \sim$, we show that \sim_n is a bisimulation.
- ▶ Let $E \sim_n F$, and let $E \xrightarrow{a} E'$ be an arbitrary transition of E. Since $\sim_n = \sim_{n+1}$, we have $E \sim_{n+1} F$, and so there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_n F'$.

- ▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.
- ▶ We have $\sim_n \supseteq \sim$ by (1)
- ▶ To prove $\sim_n \subseteq \sim$, we show that \sim_n is a bisimulation.
- ▶ Let $E \sim_n F$, and let $E \xrightarrow{a} E'$ be an arbitrary transition of E. Since $\sim_n = \sim_{n+1}$, we have $E \sim_{n+1} F$, and so there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_n F'$.
- ▶ Similarly we prove that for every transition $F \xrightarrow{a} F'$ of F there is a transition $E \xrightarrow{a} E'$ of E such that $E' \sim_n F'$. So \sim_n is a bisimulation.

Scheme for the computation of \sim

► Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.

Scheme for the computation of \sim

- ► Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.
- ▶ Output \sim_i .

Scheme for the computation of \sim

- ► Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.
- ▶ Output \sim_i .
- Correctness: Part (3) of the Proposition.

Scheme for the computation of \sim

- ▶ Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.
- ▶ Output \sim_i .
- ► Correctness: Part (3) of the Proposition.
- ► Termination: Assume the procedure does not terminate.

 Then, by part (2) of the Proposition, we have an infinite chain

$$\sim_0\supset\sim_1\supset\sim_2\ldots$$

This contradicts the finiteness of S.

▶ Idea: think of \sim not as a set of pairs, but as a set of equivalence classes.

- ► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.
- lacktriangle Recall that \sim is an equivalence relation

- ► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.
- lacktriangle Recall that \sim is an equivalence relation
- ▶ Proposition: \sim is the coarsest partition of S satisfying the following property: For every element $\{E_1, \dots E_k\} \subseteq S$ of the partition, and for every action a:

- ► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.
- lacktriangle Recall that \sim is an equivalence relation
- ▶ Proposition: \sim is the coarsest partition of S satisfying the following property: For every element $\{E_1, \ldots E_k\} \subseteq S$ of the partition, and for every action a:
 - either none of $E_1, \ldots E_k$ can do an a, or,

- ▶ Idea: think of \sim not as a set of pairs, but as a set of equivalence classes.
- lacktriangle Recall that \sim is an equivalence relation
- ▶ Proposition: \sim is the coarsest partition of S satisfying the following property: For every element $\{E_1, \ldots E_k\} \subseteq S$ of the partition, and for every action a:
 - either none of $E_1, \ldots E_k$ can do an a, or,
 - ▶ all of $E_1, ..., E_k$ can do an a, and there are processes $F_1, ..., F_k$ such that $E_i \stackrel{a}{\longrightarrow} F_i$ for every $1 \le i \le k$, and moreover $\{F_1, ..., F_k\}$ is included in an element of the partition.

- ► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.
- lacktriangle Recall that \sim is an equivalence relation
- ▶ Proposition: \sim is the coarsest partition of S satisfying the following property: For every element $\{E_1, \ldots E_k\} \subseteq S$ of the partition, and for every action a:
 - either none of $E_1, \ldots E_k$ can do an a, or,
 - ▶ all of $E_1, ..., E_k$ can do an a, and there are processes $F_1, ..., F_k$ such that $E_i \stackrel{a}{\longrightarrow} F_i$ for every $1 \le i \le k$, and moreover $\{F_1, ..., F_k\}$ is included in an element of the partition.
- ▶ Proof sketch: Show that the elements of a partition satisfy this property if and only if they are the equivalence classes of a bisimulation.
 - Show that the coarsest partition corresponds to \sim .

Splitting

Given two elements P_1 , P_2 of a partition of S and an action a, the result of splitting P_1 w.r.t P_2 and a are the sets

$$P_1' = \{E \in P_1 \mid E \xrightarrow{a} F \text{ for some } F \in P_2 \}$$

 $P_1'' = P_1 \setminus P_1'$

Splitting

Given two elements P_1 , P_2 of a partition of S and an action a, the result of splitting P_1 w.r.t P_2 and a are the sets

$$P_1' = \{E \in P_1 \mid E \xrightarrow{a} F \text{ for some } F \in P_2 \}$$

 $P_1'' = P_1 \setminus P_1'$

Input: T_E , T_F Output: equivalence classes of \sim on SInitialize $\Pi:=\{S\};$ Iterate: Choose an action a and $P_1,P_2\in\Pi$ Split P_1 with respect to P_2 and a; $\Pi=(\Pi\setminus\{P_1\})\cup\{P_1',P_1''\};$ until a fixpoint is reached;
return Π

▶ There are at most |S| - 1 splittings.

- ▶ There are at most |S| 1 splittings.
- ▶ Each splitting can be performed in time $O(|S| + |\delta|)$, where $\delta = \delta_E \cup \delta_F$ (complicated).

- ▶ There are at most |S| 1 splittings.
- ▶ Each splitting can be performed in time $O(|S| + |\delta|)$, where $\delta = \delta_E \cup \delta_F$ (complicated).
- ▶ So the running time is $O(|S| \cdot (|S| + |\delta|)$

- ▶ There are at most |S| 1 splittings.
- ▶ Each splitting can be performed in time $O(|S| + |\delta|)$, where $\delta = \delta_E \cup \delta_F$ (complicated).
- ▶ So the running time is $O(|S| \cdot (|S| + |\delta|)$
- ▶ Best known algorithm: $O(|\delta| \cdot log(|S|))$

▶ Given: two processes *E* and *F*.

- ▶ Given: two processes *E* and *F*.
- ▶ Decide: is $E \approx F$? i.e., are E and F weakly bisimilar?

- ▶ Given: two processes *E* and *F*.
- ▶ Decide: is $E \approx F$? i.e., are E and F weakly bisimilar ?
- ▶ Assume both T_E and T_F are finite.

- ▶ Given: two processes *E* and *F*.
- ▶ Decide: is $E \approx F$? i.e., are E and F weakly bisimilar ?
- ▶ Assume both T_E and T_F are finite.
- ▶ We consider the labelled transition system (S, δ) , where $S = S_E \cup S_F$ and $\delta = \delta_E \cup \delta_F$.

- ▶ Given: two processes *E* and *F*.
- ▶ Decide: is $E \approx F$? i.e., are E and F weakly bisimilar ?
- ▶ Assume both T_E and T_F are finite.
- ▶ We consider the labelled transition system (S, δ) , where $S = S_E \cup S_F$ and $\delta = \delta_E \cup \delta_F$.
- \blacktriangleright All relations we use are subsets of $S \times S$ where S is finite.

► The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 $\mathsf{replace} \Rightarrow \mathsf{by} \to \mathsf{everywhere}.$

► The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 $\mathsf{replace} \Rightarrow \mathsf{by} \to \mathsf{everywhere}.$

It follows:

E and F are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system $(S, \hat{\delta})$ " obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ) .

The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 $\mathsf{replace} \Rightarrow \mathsf{by} \to \mathsf{everywhere}.$

It follows:

E and F are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system $(S, \hat{\delta})$ " obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ) .

Scheme of the algorithm:

The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 $\mathsf{replace} \Rightarrow \mathsf{by} \to \mathsf{everywhere}.$

It follows:

E and F are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system $(S, \hat{\delta})$ " obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ) .

- Scheme of the algorithm:
 - ▶ Compute $(S, \hat{\delta})$ such that for every action a (including τ) and every pair of states $s, s' \in S$, $s \xrightarrow{a} s'$ in $(S, \hat{\delta})$ if and only if $s \xrightarrow{a} s'$ in (S, δ) .

► The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 $\mathsf{replace} \Rightarrow \mathsf{by} \to \mathsf{everywhere}.$

It follows:

E and F are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system $(S, \hat{\delta})$ " obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ) .

- Scheme of the algorithm:
 - ▶ Compute $(S, \hat{\delta})$ such that for every action a (including τ) and every pair of states $s, s' \in S$, $s \xrightarrow{a} s'$ in $(S, \hat{\delta})$ if and only if $s \xrightarrow{a} s'$ in (S, δ) .
 - ▶ Check if $E \sim F$ "with respect to the transition system $(S, \hat{\delta})$ ".

Computing $(S, \hat{\delta})$

We consider an abstract algorithm first

```
Input: (S, \delta)
Output: (S, \hat{\delta})
Initialize \hat{\delta} := \delta \cup \{(s, \tau, s) \mid s \in S\};
Iterate: For every action a and s, s', s'' \in S
              If (s, a, s') \in \hat{\delta} and (s', \tau, s'') \in \hat{\delta} or
                  (s, \tau, s') \in \hat{\delta} and (s', a, s'') \in \hat{\delta}
              then add (s, a, s'') to \hat{\delta}
    until a fixpoint is reached;
return (S, \hat{\delta})
```

► Correctness: Exercise

- Correctness: Exercise
- ► Complexity:

- Correctness: Exercise
- ► Complexity:
 - $O(|S|^2 \cdot |A|)$ iterations

- Correctness: Exercise
- ► Complexity:
 - ▶ $O(|S|^2 \cdot |A|)$ iterations
 - $O(|S|^3 \cdot |A|)$ time per iteration

- Correctness: Exercise
- ► Complexity:
 - $O(|S|^2 \cdot |A|)$ iterations
 - $O(|S|^3 \cdot |A|)$ time per iteration
- ▶ Overall time complexity: $O(|S|^5 \cdot |A|^2)$

- Correctness: Exercise
- ► Complexity:
 - $O(|S|^2 \cdot |A|)$ iterations
 - ▶ $O(|S|^3 \cdot |A|)$ time per iteration
- ▶ Overall time complexity: $O(|S|^5 \cdot |A|^2)$
- ▶ Space complexity: $O(|S|^2 \cdot |A|)$

A better algorithm

```
Input: (S, \delta) Output: (S, \hat{\delta})
 1 Initialize \hat{\delta} := \emptyset:
 2 Initialize \rho := \delta \cup \{(s, \tau, s) \mid s \in S\};
      while \rho \neq \emptyset do
           remove t = (s, a, s') from \rho;
 5 if t \notin \hat{\delta} then
              add t to \hat{\delta}:
              for all s'' such that (s'', \tau, s) \in \hat{\delta}
                    if (s'', a, s') \notin \rho
                    then add (s'', a, s') to \rho;
               for all s'' such that (s', \tau, s'') \in \hat{\delta}
10
11
                    if (s, a, s'') \notin \rho
12
                    then add (s, a, s'') to \rho;
       return (S, \hat{\delta})
13
```

▶ Termination. Every iteration removes an element from ρ , but only finitely many add elements to it (because of line 5).

- ▶ Termination. Every iteration removes an element from ρ , but only finitely many add elements to it (because of line 5).
- ▶ If $(s, a, s') \in \hat{\delta}$ after termination, then $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ . (Easy)

- ▶ Termination. Every iteration removes an element from ρ , but only finitely many add elements to it (because of line 5).
- ▶ If $(s, a, s') \in \hat{\delta}$ after termination, then $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ . (Easy)
- ▶ If $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ , then $(s, a, s') \in \hat{\delta}$ after termination. Proof: By induction on the length n of the shortest sequence showing $s \stackrel{a}{\Longrightarrow} s'$. The base n = 0 is easy (this is the case s = s' and $a = \tau$). For n > 0, we consider two cases:

- ▶ Termination. Every iteration removes an element from ρ , but only finitely many add elements to it (because of line 5).
- ▶ If $(s, a, s') \in \hat{\delta}$ after termination, then $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ . (Easy)
- ▶ If $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ , then $(s, a, s') \in \hat{\delta}$ after termination. Proof: By induction on the length n of the shortest sequence showing $s \stackrel{a}{\Longrightarrow} s'$. The base n = 0 is easy (this is the case s = s' and $a = \tau$). For n > 0, we consider two cases:
- ▶ There is a s'' such that $(s, \tau, s'') \in \delta$ and $s'' \stackrel{a}{\Longrightarrow} s'$ with respect to δ . Since the shortest sequence showing $s'' \stackrel{a}{\Longrightarrow} s'$ has length n-1, by induction hypothesis (s'', a, s') is eventually added to $\hat{\delta}$. Since any element that is moved to δ comes from ρ , (s'', a, s') must be eventually added to ρ . By lines 7-9, (s, a, s') is also eventually added to ρ , and so to $\hat{\delta}$.

- ▶ Termination. Every iteration removes an element from ρ , but only finitely many add elements to it (because of line 5).
- ▶ If $(s, a, s') \in \hat{\delta}$ after termination, then $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ . (Easy)
- If $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ , then $(s, a, s') \in \hat{\delta}$ after termination. Proof: By induction on the length n of the shortest sequence showing $s \stackrel{a}{\Longrightarrow} s'$. The base n = 0 is easy (this is the case s = s' and $a = \tau$). For n > 0, we consider two cases:
- ► There is a s'' such that $(s,\tau,s'') \in \delta$ and $s'' \stackrel{a}{\Longrightarrow} s'$ with respect to δ . Since the shortest sequence showing $s'' \stackrel{a}{\Longrightarrow} s'$ has length n-1, by induction hypothesis (s'',a,s') is eventually added to $\hat{\delta}$. Since any element that is moved to δ comes from ρ , (s'',a,s') must be eventually added to ρ . By lines 7-9, (s,a,s') is also eventually added to ρ , and so to $\hat{\delta}$.
- ► There is s'' such that $(s'', \tau, s') \in \delta$ and $s \stackrel{a}{\Longrightarrow} s''$ with respect to δ . Analogous argument to the previous case, this time using lines lines 10-12.

Time and space complexity

Time complexity:

- 1. Line 6 is executed $O(|S|^2 \cdot |A|)$ times. No transition can be added to $\hat{\delta}$ twice because of line 5. Since there are at most $|S| \cdot |A| \cdot |S|$ transitions, the bound follows.
- 2. Lines 8 and 11 are executed $O(|S|^3 \cdot |A|)$ times. They are executed at most once for each combination s, s', s'', a, because no element is added to $\hat{\delta}$ twice.
- 3. Line 4 is executed $O(|S|^3 \cdot |A|)$ times. By 2., $O(|S|^3 \cdot |A|)$ elements are added to ρ during the execution of the algorithm, and so $O(|S|^3 \cdot |A|)$ elements are have been removed from it after termination.
- 4. Lines 1, 2, and 13 take together $O(|S|^2 \cdot |A|)$ time.
- 5. The overall time complexity is $O(|S|^3 \cdot |A|)$.

Space complexity: since ρ and $\hat{\delta}$ do not contain duplicates, they require $O(|S|^2 \cdot |A|)$ space.