Communication and Concurrency
Lecture 16

Colin Stirling (cps)

School of Informatics

14th November 2013
The (strong) bisimilarity problem

- **Given:** two processes E and F
The (strong) bisimilarity problem

- **Given**: two processes E and F
- **Decide**: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
The (strong) bisimilarity problem

- Given: two processes E and F
- Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- Assume both T_E and T_F are finite
The (strong) bisimilarity problem

- **Given:** two processes E and F
- **Decide:** is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- **Assume both** T_E and T_F are finite
- **Observation:** whether $E \sim F$ depends only on T_E and T_F
The (strong) bisimilarity problem

- **Given:** two processes E and F
- **Decide:** is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- **Assume both** T_E and T_F **are finite**
- **Observation:** whether $E \sim F$ depends only on T_E and T_F
- **Restrict relations to subsets of** $S \times S$, where $S \subseteq S_E \cup S_F$. Notice that S is finite
- **Outline of the algorithm:**

The (strong) bisimilarity problem

- **Given:** two processes E and F
- **Decide:** is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- **Assume both** T_E and T_F **are finite**
- **Observation:** whether $E \sim F$ depends only on T_E and T_F
- **Restrict relations to subsets of** $S \times S$, where $S \subseteq S_E \cup S_F$. Notice that S is finite
- **Outline of the algorithm:**
 - Compute $\sim \subseteq S \times S.$
The (strong) bisimilarity problem

- **Given:** two processes E and F
- **Decide:** is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- **Assume both** T_E and T_F are finite
- **Observation:** whether $E \sim F$ depends only on T_E and T_F
- **Restrict relations to subsets of** $S \times S$, where $S \subseteq S_E \cup S_F$.
 Notice that S is finite
- **Outline of the algorithm:**
 - Compute $\sim \subseteq S \times S$.
 - Check if $(E, F) \in \sim$.
Recall that \sim is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
Bisimilarity up to n

- Recall that \sim is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each $n \geq 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
Bisimilarity up to n

- Recall that \sim is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each $n \geq 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
- $E \sim_0 F$ for all E and F.

Bisimilarity up to n

- Recall that \sim is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each $n \geq 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
 - $E \sim_0 F$ for all E and F.
 - $E \sim_{n+1} F$ if and only if for every action a, $E \xrightarrow{a} E'$ implies $\exists F' : F \xrightarrow{a} F'$ such that $E' \sim_n F'$.
Bisimilarity up to n

- Recall that \sim is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each $n \geq 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
 - $E \sim_0 F$ for all E and F.
 - $E \sim_{n+1} F$ if and only if for every action a,
 - if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $E' \sim_n F'$, and
Bisimilarity up to n

- Recall that \sim is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each $n \geq 0$, the relation \sim_n between pairs of processes is inductively defined as follows:
- $E \sim_0 F$ for all E and F.
- $E \sim_{n+1} F$ if and only if for every action a,
 - if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $E' \sim_n F'$, and
 - if $F \xrightarrow{a} F'$ then $E \xrightarrow{a} E'$ for some E' such that $E' \sim_n F'$.
Recall that \sim is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.

For each $n \geq 0$, the relation \sim_n between pairs of processes is inductively defined as follows:

- $E \sim_0 F$ for all E and F.
- $E \sim_{n+1} F$ if and only if for every action a,
 - if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $E' \sim_n F'$, and
 - if $F \xrightarrow{a} F'$ then $E \xrightarrow{a} E'$ for some E' such that $E' \sim_n F'$.
Proposition For all $n \geq 0$,

1. $\sim_n \supseteq \sim$,
2. $\sim_n \supseteq \sim_{n+1}$, and
3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

Proof: 1. By induction on n.

Base: $n = 0$. Trivial, because $E \sim_0 F$ for all E, F.

Step: Let $E \sim F$. We prove $E \sim_{n+1} F$.

Let $E \xrightarrow{a} E'$ be an arbitrary transition of E. Since $E \sim F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim F'$. By induction hypothesis, $E' \sim_n F'$.

Similarly we prove that for every transition $F \xrightarrow{a} F'$ of F there is a transition $E \xrightarrow{a} E'$ of E such that $E' \sim_n F'$.

By definition of \sim_{n+1}, we have $E \sim_{n+1} F$.

Key result

Proposition For all $n \geq 0$,

1. $\sim_n \supseteq \sim$,
2. $\sim_n \supseteq \sim_{n+1}$, and
3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

➤ **Proof:** 1. By induction on n.

Key result

Proposition For all $n \geq 0$,

1. $\sim_n \supseteq \sim$,
2. $\sim_n \supseteq \sim_{n+1}$, and
3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

Proof: 1. By induction on n.

Base: $n = 0$. Trivial, because $E \sim_0 F$ for all E, F.

Step: Let $E \sim F$. We prove $E \sim_{n+1} F$.
 Let $E \xrightarrow{a} E'$ be an arbitrary transition of E.
Key result

Proposition For all \(n \geq 0 \),

1. \(\sim_n \supseteq \sim \),
2. \(\sim_n \supseteq \sim_{n+1} \), and
3. If \(\sim_n = \sim_{n+1} \), then \(\sim_n = \sim \).

Proof:

1. By induction on \(n \).

Base: \(n = 0 \). Trivial, because \(E \sim_0 F \) for all \(E, F \).

Step: Let \(E \sim F \). We prove \(E \sim_{n+1} F \).

Let \(E \xrightarrow{a} E' \) be an arbitrary transition of \(E \).

Since \(E \sim F \), there is a transition \(F \xrightarrow{a} F' \) of \(F \) such that \(E' \sim F' \). By induction hypothesis, \(E' \sim_n F' \).
Key result

Proposition For all $n \geq 0$,

1. $\sim_n \supseteq \sim$,

2. $\sim_n \supseteq \sim_{n+1}$, and

3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

Proof: 1. By induction on n.

Base: $n = 0$. Trivial, because $E \sim_0 F$ for all E, F.

Step: Let $E \sim F$. We prove $E \sim_{n+1} F$.

Let $E \xrightarrow{a} E'$ be an arbitrary transition of E.

Since $E \sim F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim F'$. By induction hypothesis, $E' \sim_{n} F'$.

Similarly we prove that for every transition $F \xrightarrow{a} F'$ of F there is a transition $E \xrightarrow{a} E'$ of E such that $E' \sim_{n} F'$.

By definition of \sim_{n+1}, we have $E \sim_{n+1} F$.
Proof of 2

2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.
Proof of 2

- 2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.
- Base: $n = 0$. Trivial, because $E \sim_0 F$ for all E, F.
Proof of 2

- 2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.
- **Base:** $n = 0$. Trivial, because $E \sim_0 F$ for all E, F.
- **Step:** We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$.
Proof of 2

2. \(\sim_n \supseteq \sim_{n+1} \). By induction on \(n \).

Base: \(n = 0 \). Trivial, because \(E \sim_0 F \) for all \(E, F \).

Step: We assume \(\sim_n \supseteq \sim_{n+1} \) and prove \(\sim_{n+1} \supseteq \sim_{n+2} \).

Assume \(E \sim_{n+2} F \). We prove \(E \sim_{n+1} F \).

Let \(E \xrightarrow{a} E' \) be an arbitrary transition of \(E \).
Proof of 2

2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.

Base: $n = 0$. Trivial, because $E \sim_0 F$ for all E, F.

Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$

Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$.

Let $E \xrightarrow{a} E'$ be an arbitrary transition of E.

Since $E \sim_{n+2} F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_{n+1} F'$.

Proof of 2

2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.

Base: $n = 0$. Trivial, because $E \sim_0 F$ for all E, F.

Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$

Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$.

Let $E \xrightarrow{a} E'$ be an arbitrary transition of E.

Since $E \sim_{n+2} F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_{n+1} F'$.

By induction hypothesis, $E' \sim_n F'$.
2. $\sim_n \supseteq \sim_{n+1}$. By induction on n.

Base: $n = 0$. Trivial, because $E \sim_0 F$ for all E, F.

Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$

Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$.
Let $E \xrightarrow{a} E'$ be an arbitrary transition of E.

Since $E \sim_{n+2} F$, there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_{n+1} F'$.

By induction hypothesis, $E' \sim_n F'$.

Similarly we prove that for every transition $F \xrightarrow{a} F'$ of F there is a transition $E \xrightarrow{a} E'$ of E such that $E' \sim_n F'$.
So $E \sim_{n+1} F$.
3. If $\sim_n \equiv \sim_{n+1}$, then $\sim_n \equiv \sim$.
Proof of 3

3. If \(\sim_n = \sim_{n+1} \), then \(\sim_n = \sim \).

We assume \(\sim_n = \sim_{n+1} \), and prove \(\sim_n = \sim \).
3. If $\sim_n = \sim_{n+1}$, then $\sim_n \equiv \sim$.

We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n \equiv \sim$.

We have $\sim_n \supseteq \sim$ by (1).
Proof of 3

3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.

We have $\sim_n \supseteq \sim$ by (1).

To prove $\sim_n \subseteq \sim$, we show that \sim_n is a bisimulation.
Proof of 3

3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.

We have $\sim_n \supseteq \sim$ by (1)

To prove $\sim_n \subseteq \sim$, we show that \sim_n is a bisimulation.

Let $E \sim_n F$, and let $E \xrightarrow{a} E'$ be an arbitrary transition of E. Since $\sim_n = \sim_{n+1}$, we have $E \sim_{n+1} F$, and so there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_n F'$.
Proof of 3

3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.

We have $\sim_n \supseteq \sim$ by (1).

To prove $\sim_n \subseteq \sim$, we show that \sim_n is a bisimulation.

Let $E \sim_n F$, and let $E \xrightarrow{a} E'$ be an arbitrary transition of E. Since $\sim_n = \sim_{n+1}$, we have $E \sim_{n+1} F$, and so there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_n F'$.

Similarly we prove that for every transition $F \xrightarrow{a} F'$ of F there is a transition $E \xrightarrow{a} E'$ of E such that $E' \sim_n F'$.

So \sim_n is a bisimulation.
Scheme for the computation of \(\sim \)

- Compute \(\sim_0, \sim_1, \sim_2, \ldots \) until \(\sim_i = \sim_{i+1} \).
Scheme for the computation of \sim

- Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.
- Output \sim_i.

Correctness: Part (3) of the Proposition.

Termination: Assume the procedure does not terminate. Then, by part (2) of the Proposition, we have an infinite chain $\sim_0 \supset \sim_1 \supset \sim_2 \ldots$ This contradicts the finiteness of S.
Scheme for the computation of \(\sim \)

- Compute \(\sim_0, \sim_1, \sim_2, \ldots \) until \(\sim_i = \sim_{i+1} \).
- Output \(\sim_i \).
- **Correctness**: Part (3) of the Proposition.
Scheme for the computation of \sim

- Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.
- Output \sim_i.
- **Correctness:** Part (3) of the Proposition.
- **Termination:** Assume the procedure does not terminate. Then, by part (2) of the Proposition, we have an infinite chain

 $\sim_0 \supset \sim_1 \supset \sim_2 \ldots$

This contradicts the finiteness of S.
Partition refinement algorithms

- **Idea:** think of \sim not as a set of pairs, but as a set of equivalence classes.
Partition refinement algorithms

- **Idea:** think of \sim not as a set of pairs, but as a set of equivalence classes.
- **Recall that** \sim is an equivalence relation.

Proof sketch: Show that the elements of a partition satisfy this property if and only if they are the equivalence classes of a bisimulation. Show that the coarsest partition corresponds to \sim.
Partition refinement algorithms

- **Idea:** think of \sim not as a set of pairs, but as a set of equivalence classes.
- **Recall that** \sim **is an equivalence relation**
- **Proposition:** \sim **is the coarsest partition of** S **satisfying the following property:** For every element $\{E_1, \ldots, E_k\} \subseteq S$ of the partition, and for every action a:

 - either none of E_1, \ldots, E_k can do an a, or,
 - all of E_1, \ldots, E_k can do an a, and there are processes F_1, \ldots, F_k such that $E_i \xrightarrow{a} F_i$ for every $1 \leq i \leq k$, and moreover $\{F_1, \ldots, F_k\}$ is included in an element of the partition.

- **Proof sketch:** Show that the elements of a partition satisfy this property if and only if they are the equivalence classes of a bisimulation. Show that the coarsest partition corresponds to \sim.
Partition refinement algorithms

- **Idea:** think of \sim not as a set of pairs, but as a set of equivalence classes.

- **Recall that** \sim **is an equivalence relation**

- **Proposition:** \sim is the coarsest partition of S satisfying the following property: For every element $\{E_1, \ldots E_k\} \subseteq S$ of the partition, and for every action a:
 - either none of $E_1, \ldots E_k$ can do an a, or,
Partition refinement algorithms

- **Idea:** think of \sim not as a set of pairs, but as a set of equivalence classes.

- **Recall that** \sim **is an equivalence relation**

- **Proposition:** \sim **is the coarsest partition of** S **satisfying the following property:** For every element $\{E_1, \ldots E_k\} \subseteq S$ of the partition, and for every action a:
 - either none of $E_1, \ldots E_k$ can do an a, or,
 - all of $E_1, \ldots E_k$ can do an a, and there are processes F_1, \ldots, F_k such that $E_i \xrightarrow{a} F_i$ for every $1 \leq i \leq k$, and moreover $\{F_1, \ldots F_k\}$ is included in an element of the partition.

Proof sketch: Show that the elements of a partition satisfy this property if and only if they are the equivalence classes of a bisimulation. Show that the coarsest partition corresponds to \sim.
Partition refinement algorithms

- **Idea:** think of \(\sim \) not as a set of pairs, but as a set of equivalence classes.

- **Recall that** \(\sim \) **is an equivalence relation**

- **Proposition:** \(\sim \) is the coarsest partition of \(S \) satisfying the following property: For every element \(\{E_1, \ldots, E_k\} \subseteq S \) of the partition, and for every action \(a \):
 - either none of \(E_1, \ldots, E_k \) can do an \(a \), or,
 - all of \(E_1, \ldots, E_k \) can do an \(a \), and there are processes \(F_1, \ldots, F_k \) such that \(E_i \xrightarrow{a} F_i \) for every \(1 \leq i \leq k \), and moreover \(\{F_1, \ldots, F_k\} \) is included in an element of the partition.

- **Proof sketch:** Show that the elements of a partition satisfy this property if and only if they are the equivalence classes of a bisimulation.

Show that the coarsest partition corresponds to \(\sim \).
Splitting

Given two elements P_1, P_2 of a partition of S and an action a, the result of splitting P_1 w.r.t P_2 and a are the sets

\[P_1' = \{ E \in P_1 \mid E \xrightarrow{a} F \text{ for some } F \in P_2 \} \]

\[P_1'' = P_1 \setminus P_1' \]
Splitting

Given two elements P_1, P_2 of a partition of S and an action a, the result of splitting P_1 w.r.t P_2 and a are the sets

\[P'_1 = \{ E \in P_1 \mid E \overset{a}{\rightarrow} F \text{ for some } F \in P_2 \} \]
\[P''_1 = P_1 \setminus P'_1 \]

Input: T_E, T_F
Output: equivalence classes of \sim on S

Initialize $\Pi := \{S\};$

Iterate: Choose an action a and $P_1, P_2 \in \Pi$
Split P_1 with respect to P_2 and a;

\[\Pi = (\Pi \setminus \{P_1\}) \cup \{P'_1, P''_1\}; \]
until a fixpoint is reached;

return Π
There are at most $|S| - 1$ splittings.
Complexity

- There are at most $|S| - 1$ splittings.
- Each splitting can be performed in time $O(|S| + |\delta|)$, where $\delta = \delta_E \cup \delta_F$ (complicated).
There are at most $|S| - 1$ splittings.

Each splitting can be performed in time $O(|S| + |\delta|)$, where $\delta = \delta_E \cup \delta_F$ (complicated).

So the running time is $O(|S| \cdot (|S| + |\delta|))$.

Best known algorithm: $O(|\delta| \cdot \log(|S|))$.

Complexity

- There are at most $|S| - 1$ splittings.
- Each splitting can be performed in time $O(|S| + |\delta|)$, where $\delta = \delta_E \cup \delta_F$ (complicated).
- So the running time is $O(|S| \cdot (|S| + |\delta|))$
- Best known algorithm: $O(|\delta| \cdot \log(|S|))$
The weak bisimilarity problem

- **Given:** two processes E and F.
The weak bisimilarity problem

- **Given**: two processes E and F.
- **Decide**: is $E \approx F$? i.e., are E and F weakly bisimilar?
The weak bisimilarity problem

- **Given:** two processes E and F.
- **Decide:** is $E \approx F$? i.e., are E and F weakly bisimilar?
- **Assume both** T_E and T_F are finite.
The weak bisimilarity problem

- **Given:** two processes E and F.
- **Decide:** is $E \approx F$? i.e., are E and F weakly bisimilar?
- **Assume both** T_E and T_F are finite.
- **We consider the labelled transition system** (S, δ), where $S = S_E \cup S_F$ and $\delta = \delta_E \cup \delta_F$.
The weak bisimilarity problem

- **Given:** two processes E and F.
- **Decide:** is $E \approx F$? i.e., are E and F weakly bisimilar?
- **Assume both** T_E and T_F **are finite.**
- **We consider the labelled transition system** (S, δ), **where** $S = S_E \cup S_F$ **and** $\delta = \delta_E \cup \delta_F$.
- **All relations we use are subsets of** $S \times S$ **where** S **is finite.**
Main idea

- The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 replace \(\Rightarrow \) by \(\rightarrow \) everywhere.

- It follows: E and F are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system \((S, \hat{\delta})\)" obtained by replacing \(\Rightarrow \) through \(\rightarrow \) in the transition system \((S, \delta)\).

- Scheme of the algorithm:
 - Compute \((S, \hat{\delta})\) such that for every action \(a\) (including \(\tau\)) and every pair of states \(s, s' \in S\), \(s a \xrightarrow{} s'\) in \((S, \hat{\delta})\) if and only if \(s a \Rightarrow s'\) in \((S, \delta)\).
 - Check if \(E \sim F\) "with respect to the transition system \((S, \hat{\delta})\)."
Main idea

- The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 \[\text{replace } \Rightarrow \text{ by } \rightarrow \text{ everywhere.} \]

- It follows:

 \[E \text{ and } F \text{ are weakly bisimilar if and only if they are strongly bisimilar “with respect to the transition system } (S, \hat{\delta}) \text{” obtained by replacing } \Rightarrow \text{ through } \rightarrow \text{ in the transition system } (S, \delta). \]
Main idea

- The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 replace \Rightarrow by \rightarrow everywhere.

- It follows:

 E and F are weakly bisimilar if and only if they are strongly bisimilar “with respect to the transition system $(S, \hat{\delta})$” obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ).

- Scheme of the algorithm:
Main idea

- The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 replace \Rightarrow by \rightarrow everywhere.

- It follows:

 E and F are weakly bisimilar if and only if they are strongly bisimilar “with respect to the transition system $(S, \hat{\delta})$” obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ).

- Scheme of the algorithm:

 - Compute $(S, \hat{\delta})$ such that for every action a (including τ) and every pair of states $s, s' \in S$, $s \xrightarrow{a} s'$ in $(S, \hat{\delta})$ if and only if $s \xrightarrow{a} s'$ in (S, δ).
Main idea

- The definition of weak bisimilarity is very similar to that of strong bisimilarity:

 replace \Rightarrow by \rightarrow everywhere.

- It follows:

 \[E \text{ and } F \text{ are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system } (S, \hat{\delta}) \text{" obtained by replacing } \Rightarrow \text{ through } \rightarrow \text{ in the transition system } (S, \delta). \]

- Scheme of the algorithm:
 - Compute \((S, \hat{\delta})\) such that for every action \(a\) (including \(\tau\)) and every pair of states \(s, s' \in S\), \(s \xrightarrow{a} s'\) in \((S, \hat{\delta})\) if and only if \(s \xrightarrow{a} s'\) in \((S, \delta)\).
 - Check if \(E \sim F\) “with respect to the transition system \((S, \hat{\delta})\).”
Computing \((S, \hat{\delta})\)

We consider an abstract algorithm first

Input: \((S, \delta)\)
Output: \((S, \hat{\delta})\)

Initialize \(\hat{\delta} := \delta \cup \{(s, \tau, s) \mid s \in S\} \);
Iterate: For every action \(a\) and \(s, s', s'' \in S\)
\>
If \((s, a, s') \in \hat{\delta}\) and \((s', \tau, s'') \in \hat{\delta}\) or \((s, \tau, s') \in \hat{\delta}\) and \((s', a, s'') \in \hat{\delta}\)
then add \((s, a, s'')\) to \(\hat{\delta}\)
until a fixpoint is reached;
return \((S, \hat{\delta})\)
Correctness and complexity

- Correctness: Exercise
Correctness and complexity

- Correctness: Exercise
- Complexity:

\[O(|S|^2 \cdot |A|) \text{ iterations} \]

\[O(|S|^3 \cdot |A|) \text{ time per iteration} \]

Overall time complexity:

\[O(|S|^5 \cdot |A|^2) \]

Space complexity:

\[O(|S|^2 \cdot |A|) \]
Correctness and complexity

- Correctness: Exercise
- Complexity:
 - \(O(|S|^2 \cdot |A|) \) iterations
Correctness and complexity

- **Correctness:** Exercise
- **Complexity:**
 - $O(|S|^2 \cdot |A|)$ iterations
 - $O(|S|^3 \cdot |A|)$ time per iteration
Correctness and complexity

- **Correctness:** Exercise
- **Complexity:**
 - $O(|S|^2 \cdot |A|)$ iterations
 - $O(|S|^3 \cdot |A|)$ time per iteration
- **Overall time complexity:** $O(|S|^5 \cdot |A|^2)$
Correctness and complexity

- Correctness: Exercise
- Complexity:
 - \(O(|S|^2 \cdot |A|) \) iterations
 - \(O(|S|^3 \cdot |A|) \) time per iteration
- Overall time complexity: \(O(|S|^5 \cdot |A|^2) \)
- Space complexity: \(O(|S|^2 \cdot |A|) \)
A better algorithm

Input: \((S, \delta)\) Output: \((S, \hat{\delta})\)
1. Initialize \(\hat{\delta} := \emptyset\);
2. Initialize \(\rho := \delta \cup \{(s, \tau, s) \mid s \in S\}\);
3. while \(\rho \neq \emptyset\) do
 4. remove \(t = (s, a, s')\) from \(\rho\);
 5. if \(t \notin \hat{\delta}\) then
 6. add \(t\) to \(\hat{\delta}\);
 7. for all \(s''\) such that \((s'', \tau, s)\) \(\in \hat{\delta}\)
 8. if \((s'', a, s')\) \(\notin \rho\)
 9. then add \((s'', a, s')\) to \(\rho\);
 10. for all \(s''\) such that \((s', \tau, s'')\) \(\in \hat{\delta}\)
 11. if \((s, a, s'')\) \(\notin \rho\)
 12. then add \((s, a, s'')\) to \(\rho\);
13. return \((S, \hat{\delta})\)
Correctness (w.r.t = with respect to)

- **Termination.** Every iteration removes an element from ρ, but only finitely many add elements to it (because of line 5).
Correctness (w.r.t = with respect to)

- **Termination.** Every iteration removes an element from ρ, but only finitely many add elements to it (because of line 5).
- If $(s, a, s') \in \hat{\delta}$ after termination, then $s \xrightarrow{a} s'$ w.r.t δ. (Easy)
Correctness (w.r.t = with respect to)

▶ Termination. Every iteration removes an element from ρ, but only finitely many add elements to it (because of line 5).

▶ If $(s, a, s') \in \hat{\delta}$ after termination, then $s \xrightarrow{a} s'$ w.r.t δ. (Easy)

▶ If $s \xrightarrow{a} s'$ w.r.t δ, then $(s, a, s') \in \hat{\delta}$ after termination.

Proof: By induction on the length n of the shortest sequence showing $s \xrightarrow{a} s'$. The base $n = 0$ is easy (this is the case $s = s'$ and $a = \tau$). For $n > 0$, we consider two cases:
Correctness (w.r.t = with respect to)

- **Termination.** Every iteration removes an element from ρ, but only finitely many add elements to it (because of line 5).

- If $(s, a, s') \in \hat{\delta}$ after termination, then $s \xrightarrow{a} s'$ w.r.t δ. (Easy)

- If $s \xrightarrow{a} s'$ w.r.t δ, then $(s, a, s') \in \hat{\delta}$ after termination.

 Proof: By induction on the length n of the shortest sequence showing $s \xrightarrow{a} s'$. The base $n = 0$ is easy (this is the case $s = s'$ and $a = \tau$). For $n > 0$, we consider two cases:

 - There is a s'' such that $(s, \tau, s'') \in \delta$ and $s'' \xrightarrow{a} s'$ with respect to δ. Since the shortest sequence showing $s'' \xrightarrow{a} s'$ has length $n - 1$, by induction hypothesis (s'', a, s') is eventually added to $\hat{\delta}$. Since any element that is moved to δ comes from ρ, (s'', a, s') must be eventually added to ρ. By lines 7-9, (s, a, s') is also eventually added to ρ, and so to $\hat{\delta}$.

Correctness (w.r.t = with respect to)

- **Termination.** Every iteration removes an element from ρ, but only finitely many add elements to it (because of line 5).

- If $(s, a, s') \in \hat{\delta}$ after termination, then $s \xrightarrow{a} s'$ w.r.t δ. (**Easy**)

- If $s \xrightarrow{a} s'$ w.r.t δ, then $(s, a, s') \in \hat{\delta}$ after termination.

Proof: By induction on the length n of the shortest sequence showing $s \xrightarrow{a} s'$. The base $n = 0$ is easy (this is the case $s = s'$ and $a = \tau$). For $n > 0$, we consider two cases:

- There is a s'' such that $(s, \tau, s'') \in \delta$ and $s'' \xrightarrow{a} s'$ with respect to δ. Since the shortest sequence showing $s'' \xrightarrow{a} s'$ has length $n - 1$, by induction hypothesis (s'', a, s') is eventually added to $\hat{\delta}$. Since any element that is moved to δ comes from ρ, (s'', a, s') must be eventually added to ρ. By lines 7-9, (s, a, s') is also eventually added to ρ, and so to $\hat{\delta}$.

- There is s'' such that $(s'', \tau, s') \in \delta$ and $s \xrightarrow{a} s''$ with respect to δ. Analogous argument to the previous case, this time using lines lines 10-12.
Time and space complexity

Time complexity:

1. Line 6 is executed $O(|S|^2 \cdot |A|)$ times. No transition can be added to $\hat{\delta}$ twice because of line 5. Since there are at most $|S| \cdot |A| \cdot |S|$ transitions, the bound follows.

2. Lines 8 and 11 are executed $O(|S|^3 \cdot |A|)$ times. They are executed at most once for each combination s, s', s'', a, because no element is added to $\hat{\delta}$ twice.

3. Line 4 is executed $O(|S|^3 \cdot |A|)$ times. By 2., $O(|S|^3 \cdot |A|)$ elements are added to ρ during the execution of the algorithm, and so $O(|S|^3 \cdot |A|)$ elements are have been removed from it after termination.

4. Lines 1, 2, and 13 take together $O(|S|^2 \cdot |A|)$ time.

5. The overall time complexity is $O(|S|^3 \cdot |A|)$.

Space complexity: since ρ and $\hat{\delta}$ do not contain duplicates, they require $O(|S|^2 \cdot |A|)$ space.