The (strong) bisimilarity problem

• Given: two processes E and FCommunication and Concurrency Lecture 16 Colin Stirling (cps) School of Informatics 14th November 2013

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

The (strong) bisimilarity problem

► Given: two processes *E* and *F*

• Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?

The (strong) bisimilarity problem

- ▶ Given: two processes *E* and *F*
- **•** Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- Assume both T_E and T_F are finite

|▲□ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ● のへで

The (strong) bisimilarity problem

The (strong) bisimilarity problem

- ▶ Given: two processes *E* and *F*
- **•** Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- Assume both T_E and T_F are finite
- Observation: whether $E \sim F$ depends only on T_E and T_F

- Given: two processes E and F
- **•** Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- Assume both T_E and T_F are finite
- Observation: whether $E \sim F$ depends only on T_E and T_F
- ► Restrict relations to subsets of S × S, where S ⊆ S_E ∪ S_F. Notice that S is finite
- Outline of the algorithm:

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

▲□▶▲@▶▲≧▶▲≧▶ ≧ のへで

The (strong) bisimilarity problem

- ► Given: two processes *E* and *F*
- **•** Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- Assume both T_E and T_F are finite
- ▶ Observation: whether $E \sim F$ depends only on T_E and T_F
- Restrict relations to subsets of S × S, where S ⊆ S_E ∪ S_F.
 Notice that S is finite
- Outline of the algorithm:
 - Compute $\sim \subseteq S \times S$.

The (strong) bisimilarity problem

- ► Given: two processes *E* and *F*
- Decide: is $E \sim F$? i.e., are E and F (strongly) bisimilar?
- Assume both T_E and T_F are finite
- ▶ Observation: whether $E \sim F$ depends only on T_E and T_F
- Restrict relations to subsets of S × S, where S ⊆ S_E ∪ S_F.
 Notice that S is finite
- Outline of the algorithm:
 - Compute $\sim \subseteq S \times S$.
 - Check if $(E, F) \in \sim$.

Bisimilarity up to *n*

 Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.

Bisimilarity up to n

- Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each n ≥ 0, the relation ~n between pairs of processes is inductively defined as follows:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Bisimilarity up to n

- \blacktriangleright Recall that \sim is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each n ≥ 0, the relation ~n between pairs of processes is inductively defined as follows:
- $E \sim_0 F$ for all E and F.

Bisimilarity up to *n*

- Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each n ≥ 0, the relation ~n between pairs of processes is inductively defined as follows:
- $E \sim_0 F$ for all E and F.
- $E \sim_{n+1} F$ if and only if for every action a,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣��

Bisimilarity up to *n*

- Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each n ≥ 0, the relation ~n between pairs of processes is inductively defined as follows:
- $E \sim_0 F$ for all E and F.
- $E \sim_{n+1} F$ if and only if for every action a,
 - if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $E' \sim_n F'$, and

Bisimilarity up to n

- Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each n ≥ 0, the relation ~_n between pairs of processes is inductively defined as follows:
- $E \sim_0 F$ for all E and F.
- $E \sim_{n+1} F$ if and only if for every action a,
 - if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $E' \sim_n F'$, and
 - if $F \xrightarrow{a} F'$ then $E \xrightarrow{a} E'$ for some E' such that $E' \sim_n F'$.

・ロト・西ト・モン・モー シック

Bisimilarity up to n

- Recall that ~ is the largest bisimulation or the union of all bisimulations, and that it is a bisimulation itself.
- For each n ≥ 0, the relation ~n between pairs of processes is inductively defined as follows:
- $E \sim_0 F$ for all E and F.
- $E \sim_{n+1} F$ if and only if for every action *a*,
 - if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $E' \sim_n F'$, and
 - if $F \xrightarrow{a} F'$ then $E \xrightarrow{a} E'$ for some E' such that $E' \sim_n F'$.

$$\begin{array}{ccc} E & \sim_{n+1} & F \\ \downarrow a & & \downarrow a \\ E' & \sim_n & F' \end{array}$$

Key result

Proposition For all $n \ge 0$,

- 1. $\sim_n \supseteq \sim$,
- 2. $\sim_n \supseteq \sim_{n+1}$, and
- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

Key result

Proposition For all $n \ge 0$,

- 1. $\sim_n \supseteq \sim_n$
- 2. $\sim_n \supseteq \sim_{n+1}$, and
- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ **Proof**: 1. By induction on *n*.

Key result

Proposition For all $n \ge 0$,

- 1. $\sim_n \geq \sim$,
- 2. $\sim_n \supseteq \sim_{n+1}$, and
- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ **Proof**: 1. By induction on *n*.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F
- Step: Let E ~ F. We prove E ~_{n+1} F. Let E ^a→ E' be an arbitrary transition of E

◆□ → ◆□ → ◆目 → ◆目 → ◆ ● ◆ ● ◆

・ロト・日本・モト・モー ちょう

Key result

Proposition For all $n \ge 0$,

1. $\sim_n \supseteq \sim_n$

2. $\sim_n \supseteq \sim_{n+1}$, and

- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ Proof: 1. By induction on *n*.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F
- Step: Let E ~ F. We prove E ~_{n+1} F.
 Let E ^a→ E' be an arbitrary transition of E
 Since E ~ F, there is a transition F ^a→ F' of F such that E' ~ F'. By induction hypothesis, E' ~_n F'.

Key result

Proposition For all $n \ge 0$,

- 1. $\sim_n \supseteq \sim_n$
- 2. $\sim_n \supseteq \sim_{n+1}$, and
- 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ Proof: 1. By induction on *n*.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F
- Step: Let E ~ F. We prove E ~_{n+1} F.
 Let E ^a→ E' be an arbitrary transition of E
 Since E ~ F, there is a transition F ^a→ F' of F such that E' ~ F'. By induction hypothesis, E' ~_n F'.
 Similarly we prove that for every transition F ^a→ F' of F there is a transition E ^a→ E' of E such that E' ~_n F'.
 By definition of ~_{n+1}, we have E ~_{n+1} F

Proof of 2

▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on *n*.

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on *n*.
- **•** Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.

▲□▶▲□▶▲≡▶▲≡▶ ≡ の��

Proof of 2

▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on *n*.

- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$

Proof of 2

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on *n*.
- **•** Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- ▶ Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$
- Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$. Let $E \xrightarrow{a} E'$ be an arbitrary transition of E.

Proof of 2

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on *n*.
- **•** Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- ▶ Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$
- ► Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$. Let $E \xrightarrow{a} E'$ be an arbitrary transition of E.
- Since E ∼_{n+2} F, there is a transition F → F' of F such that E' ∼_{n+1} F'.

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on *n*.
- ▶ Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- ▶ Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$
- Assume E ~_{n+2} F. We prove E ~_{n+1} F. Let E ^a→ E' be an arbitrary transition of E.
- Since E ∼_{n+2} F, there is a transition F → F' of F such that E' ∼_{n+1} F'.
- By induction hypothesis, $E' \sim_n F'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

・ロト・母ト・ヨト・ヨト ヨー うへぐ

Proof of 2

- ▶ 2. $\sim_n \supseteq \sim_{n+1}$. By induction on *n*.
- **•** Base: n = 0. Trivial, because $E \sim_0 F$ for all E, F.
- ▶ Step: We assume $\sim_n \supseteq \sim_{n+1}$ and prove $\sim_{n+1} \supseteq \sim_{n+2}$
- ► Assume $E \sim_{n+2} F$. We prove $E \sim_{n+1} F$. Let $E \xrightarrow{a} E'$ be an arbitrary transition of E.
- Since E ∼_{n+2} F, there is a transition F → F' of F such that E' ∼_{n+1} F'.
- By induction hypothesis, $E' \sim_n F'$.
- Similarly we prove that for every transition F → F' of F there is a transition E → E' of E such that E' ~_n F'. So E ~_{n+1} F.

$Proof \ of \ 3$

▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

Proof of 3

- ▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.

- ▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.
- We have $\sim_n \supseteq \sim$ by (1)

Proof of 3

▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.

- We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.
- We have $\sim_n \supseteq \sim$ by (1)
- ▶ To prove $\sim_n \subseteq \sim$, we show that \sim_n is a bisimulation.

Proof of 3

- ▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- ▶ We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.
- ▶ We have $\sim_n \supseteq \sim$ by (1)
- ▶ To prove $\sim_n \subseteq \sim$, we show that \sim_n is a bisimulation.
- ► Let $E \sim_n F$, and let $E \xrightarrow{a} E'$ be an arbitrary transition of E. Since $\sim_n = \sim_{n+1}$, we have $E \sim_{n+1} F$, and so there is a transition $F \xrightarrow{a} F'$ of F such that $E' \sim_n F'$.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Scheme for the computation of \sim

- ▶ 3. If $\sim_n = \sim_{n+1}$, then $\sim_n = \sim$.
- We assume $\sim_n = \sim_{n+1}$, and prove $\sim_n = \sim$.
- ▶ We have $\sim_n \supseteq \sim$ by (1)
- ▶ To prove $\sim_n \subseteq \sim$, we show that \sim_n is a bisimulation.
- Let E ~_n F, and let E → E' be an arbitrary transition of E. Since ~_n=~_{n+1}, we have E ~_{n+1} F, and so there is a transition F → F' of F such that E' ~_n F'.
- Similarly we prove that for every transition F → F' of F there is a transition E → E' of E such that E' ~_n F'. So ~_n is a bisimulation.

• Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.

・□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − ∽ Q @

Scheme for the computation of \sim

• Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.

• Output \sim_i .

Scheme for the computation of \sim

- Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.
- Output \sim_i .
- Correctness: Part (3) of the Proposition.

|▲□ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ● のへで

Scheme for the computation of \sim

- Compute $\sim_0, \sim_1, \sim_2, \ldots$ until $\sim_i = \sim_{i+1}$.
- Output \sim_i .
- ▶ Correctness: Part (3) of the Proposition.
- Termination: Assume the procedure does not terminate. Then, by part (2) of the Proposition, we have an infinite chain

 $\sim_0 \supset \sim_1 \supset \sim_2 \dots$

This contradicts the finiteness of S.

Partition refinement algorithms

► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへぐ

Partition refinement algorithms

- ► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.
- \blacktriangleright Recall that \sim is an equivalence relation

Partition refinement algorithms

- ► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.
- \blacktriangleright Recall that \sim is an equivalence relation
- Proposition: ~ is the coarsest partition of S satisfying the following property: For every element {E₁,...E_k} ⊆ S of the partition, and for every action a:

▲□▶ ▲圖▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Partition refinement algorithms

- ► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.
- \blacktriangleright Recall that \sim is an equivalence relation
- Proposition: ~ is the coarsest partition of S satisfying the following property: For every element {E₁,...E_k} ⊆ S of the partition, and for every action a:
 - either none of E_1, \ldots, E_k can do an a, or,

Partition refinement algorithms

- ► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.
- \blacktriangleright Recall that \sim is an equivalence relation
- Proposition: ~ is the coarsest partition of S satisfying the following property: For every element {E₁,...E_k} ⊆ S of the partition, and for every action a:
 - either none of E_1, \ldots, E_k can do an a, or,
 - all of E₁,..., E_k can do an a, and there are processes F₁,..., F_k such that E_i → F_i for every 1 ≤ i ≤ k, and moreover {F₁,..., F_k} is included in an element of the partition.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ろんの

Partition refinement algorithms

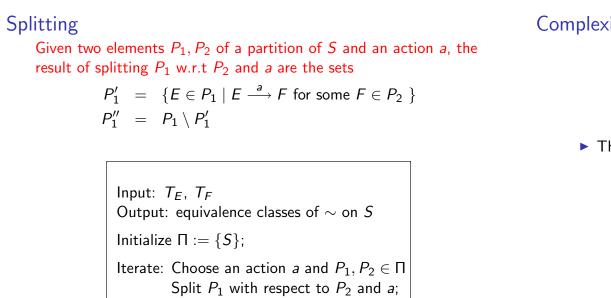
- ► Idea: think of ~ not as a set of pairs, but as a set of equivalence classes.
- \blacktriangleright Recall that \sim is an equivalence relation
- Proposition: ~ is the coarsest partition of S satisfying the following property: For every element {E₁,...E_k} ⊆ S of the partition, and for every action a:
 - either none of $E_1, \ldots E_k$ can do an a, or,
 - all of E₁,..., E_k can do an a, and there are processes F₁,..., F_k such that E_i → F_i for every 1 ≤ i ≤ k, and moreover {F₁,..., F_k} is included in an element of the partition.
- Proof sketch: Show that the elements of a partition satisfy this property if and only if they are the equivalence classes of a bisimulation.

Show that the coarsest partition corresponds to \sim .

Splitting

Given two elements P_1 , P_2 of a partition of S and an action a, the result of splitting P_1 w.r.t P_2 and a are the sets

$$P'_1 = \{E \in P_1 \mid E \xrightarrow{a} F \text{ for some } F \in P_2 \}$$
$$P''_1 = P_1 \setminus P'_1$$



 $\Pi = (\Pi \setminus \{P_1\}) \cup \{P'_1, P''_1\};$

until a fixpoint is reached;

Complexity

• There are at most |S| - 1 splittings.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Complexity

• There are at most |S| - 1 splittings.

return П

► Each splitting can be performed in time $O(|S| + |\delta|)$, where $\delta = \delta_E \cup \delta_F$ (complicated).

- There are at most |S| 1 splittings.
- Each splitting can be performed in time $O(|S| + |\delta|)$, where $\delta = \delta_E \cup \delta_F$ (complicated).
- ▶ So the running time is $O(|S| \cdot (|S| + |\delta|))$

Complexity

The weak bisimilarity problem

- There are at most |S| 1 splittings.
- ▶ Each splitting can be performed in time $O(|S| + |\delta|)$, where $\delta = \delta_E \cup \delta_F$ (complicated).
- So the running time is $O(|S| \cdot (|S| + |\delta|))$
- Best known algorithm: $O(|\delta| \cdot log(|S|))$

▶ Given: two processes *E* and *F*.

|▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ | 臣|||の�@

The weak bisimilarity problem

The weak bisimilarity problem

- ► Given: two processes *E* and *F*.
- **Decide**: is $E \approx F$? i.e., are E and F weakly bisimilar ?

- ▶ Given: two processes *E* and *F*.
- **Decide**: is $E \approx F$? i.e., are E and F weakly bisimilar ?
- Assume both T_E and T_F are finite.

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

The weak bisimilarity problem

The weak bisimilarity problem

- ▶ Given: two processes *E* and *F*.
- ▶ Decide: is $E \approx F$? i.e., are E and F weakly bisimilar ?
- Assume both T_E and T_F are finite.
- We consider the labelled transition system (S, δ) , where $S = S_E \cup S_F$ and $\delta = \delta_E \cup \delta_F$.

- ▶ Given: two processes *E* and *F*.
- Decide: is $E \approx F$? i.e., are E and F weakly bisimilar ?
- Assume both T_E and T_F are finite.
- We consider the labelled transition system (S, δ) , where $S = S_E \cup S_F$ and $\delta = \delta_E \cup \delta_F$.
- ▶ All relations we use are subsets of $S \times S$ where S is finite.

<ロ> 4回> 4回> 4回> 4回> 4回> 30000

・ロ・・日本・ 山下・ 山下・ 山下・ 山下・ しょう

Main idea

The definition of weak bisimilarity is very similar to that of strong bisimilarity:

replace \Rightarrow by \rightarrow everywhere.

Main idea

The definition of weak bisimilarity is very similar to that of strong bisimilarity:

replace \Rightarrow by \rightarrow everywhere.

It follows:

E and F are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system $(S, \hat{\delta})$ " obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ) .

Main idea

The definition of weak bisimilarity is very similar to that of strong bisimilarity:

replace \Rightarrow by \rightarrow everywhere.

► It follows:

E and F are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system $(S, \hat{\delta})$ " obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ) .

Scheme of the algorithm:

Main idea

The definition of weak bisimilarity is very similar to that of strong bisimilarity:

replace \Rightarrow by \rightarrow everywhere.

It follows:

E and F are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system $(S, \hat{\delta})$ " obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ) .

Scheme of the algorithm:

Compute (S, δ̂) such that for every action a (including τ) and every pair of states s, s' ∈ S, s → s' in (S, δ̂) if and only if s → s' in (S, δ).

Main idea

The definition of weak bisimilarity is very similar to that of strong bisimilarity:

replace \Rightarrow by \rightarrow everywhere.

It follows:

E and F are weakly bisimilar if and only if they are strongly bisimilar "with respect to the transition system $(S, \hat{\delta})$ " obtained by replacing \Rightarrow through \rightarrow in the transition system (S, δ) .

- Scheme of the algorithm:
 - Compute (S, δ̂) such that for every action a (including τ) and every pair of states s, s' ∈ S, s → s' in (S, δ̂) if and only if s → s' in (S, δ).
 - Check if $E \sim F$ "with respect to the transition system $(S, \hat{\delta})$ ".

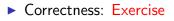
Computing $(S, \hat{\delta})$

We consider an abstract algorithm first

 $\begin{array}{l} \text{Input: } (S,\delta) \\ \text{Output: } (S,\hat{\delta}) \\ \text{Initialize } \hat{\delta} := \delta \cup \{(s,\tau,s) \mid s \in S\}; \\ \text{Iterate: For every action } a \text{ and } s,s',s'' \in S \\ \quad \text{If } (s,a,s') \in \hat{\delta} \text{ and } (s',\tau,s'') \in \hat{\delta} \text{ or} \\ \quad (s,\tau,s') \in \hat{\delta} \text{ and } (s',a,s'') \in \hat{\delta} \\ \quad \text{then add } (s,a,s'') \text{ to } \hat{\delta} \\ \text{until a fixpoint is reached;} \\ \text{return } (S,\hat{\delta}) \end{array}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

Correctness and complexity



- ► Correctness: Exercise
- ► Complexity:

Correctness and complexity

Correctness and complexity

- ► Correctness: Exercise
- ► Complexity:
 - $O(|S|^2 \cdot |A|)$ iterations

- ► Correctness: Exercise
- ► Complexity:

 - O(|S|² · |A|) iterations
 O(|S|³ · |A|) time per iteration

Correctness and complexity

- ► Correctness: Exercise
- ► Complexity:

 - $O(|S|^2 \cdot |A|)$ iterations $O(|S|^3 \cdot |A|)$ time per iteration
- Overall time complexity: $O(|S|^5 \cdot |A|^2)$

- ► Correctness: Exercise
- ► Complexity:
 - $O(|S|^2 \cdot |A|)$ iterations
 - $O(|S|^3 \cdot |A|)$ time per iteration
- Overall time complexity: $O(|S|^5 \cdot |A|^2)$
- Space complexity: $O(|S|^2 \cdot |A|)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣��

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

A better algorithm

Inpi	ut: (S,δ) Output: $(S,\hat{\delta})$			
	Initialize $\hat{\delta} := \emptyset;$			
2	Initialize $\rho := \delta \cup \{(s, \tau, s) \mid s \in S\};$			
3	while $ ho eq \emptyset$ do			
4	remove $t = (s, a, s')$ from ρ ;			
5	if $t \notin \hat{\delta}$ then			
6	add t to $\hat{\delta}$;			
7	for all s'' such that $(s'', au,s)\in \hat{\delta}$			
8	$if\;(\pmb{s}'',\pmb{a},\pmb{s}')\notin\rho$			
9	then add (s'',a,s') to $ ho$;			
10	for all s'' such that $(s', au,s'')\in\hat{\delta}$			
11	if $(s, a, s'') \notin ho$			
12	then add (s,a,s'') to $ ho$;			
13	return $(S, \hat{\delta})$			
	A A A A A A A A A A A A A A A A A	≣▶ ∢ ≣ ▶	101	୬ବନ

Correctness (w.r.t = with respect to)

• Termination. Every iteration removes an element from ρ , but only finitely many add elements to it (because of line 5).

Correctness (w.r.t = with respect to)

- Termination. Every iteration removes an element from ρ, but only finitely many add elements to it (because of line 5).
- ▶ If $(s, a, s') \in \hat{\delta}$ after termination, then $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ . (Easy)

Correctness (w.r.t = with respect to)

- Termination. Every iteration removes an element from ρ, but only finitely many add elements to it (because of line 5).
- ▶ If $(s, a, s') \in \hat{\delta}$ after termination, then $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ . (Easy)
- If s ⇒ s' w.r.t δ, then (s, a, s') ∈ δ̂ after termination.
 Proof: By induction on the length n of the shortest sequence showing s ⇒ s'. The base n = 0 is easy (this is the case s = s' and a = τ). For n > 0, we consider two cases:

▲□▶ ▲□▶ ▲国▶ ▲国▶ - 国 - のへで

Correctness (w.r.t = with respect to)

- Termination. Every iteration removes an element from ρ, but only finitely many add elements to it (because of line 5).
- ▶ If $(s, a, s') \in \hat{\delta}$ after termination, then $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ . (Easy)
- If s ⇒ s' w.r.t δ, then (s, a, s') ∈ δ̂ after termination.
 Proof: By induction on the length n of the shortest sequence showing s ⇒ s'. The base n = 0 is easy (this is the case s = s' and a = τ). For n > 0, we consider two cases:
- There is a s" such that (s, τ, s") ∈ δ and s" ⇒ s' with respect to δ. Since the shortest sequence showing s" ⇒ s' has length n − 1, by induction hypothesis (s", a, s') is eventually added to δ̂. Since any element that is moved to δ comes from ρ, (s", a, s') must be eventually added to ρ̂. By lines 7-9, (s, a, s') is also eventually added to ρ̂, and so to δ̂.

Correctness (w.r.t = with respect to)

- Termination. Every iteration removes an element from ρ, but only finitely many add elements to it (because of line 5).
- ▶ If $(s, a, s') \in \hat{\delta}$ after termination, then $s \stackrel{a}{\Longrightarrow} s'$ w.r.t δ . (Easy)
- If s ⇒ s' w.r.t δ, then (s, a, s') ∈ δ̂ after termination.
 Proof: By induction on the length n of the shortest sequence showing s ⇒ s'. The base n = 0 is easy (this is the case s = s' and a = τ). For n > 0, we consider two cases:
- There is a s" such that (s, τ, s") ∈ δ and s" ⇒ s' with respect to δ. Since the shortest sequence showing s" ⇒ s' has length n − 1, by induction hypothesis (s", a, s') is eventually added to δ̂. Since any element that is moved to δ comes from ρ, (s", a, s') must be eventually added to ρ. By lines 7-9, (s, a, s') is also eventually added to ρ, and so to δ̂.
- There is s" such that (s", τ, s') ∈ δ and s ⇒ s" with respect to δ. Analogous argument to the previous case, this time using lines lines 10-12.

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへ⊙

Time and space complexity

Time complexity:

- 1. Line 6 is executed $O(|S|^2 \cdot |A|)$ times. No transition can be added to $\hat{\delta}$ twice because of line 5. Since there are at most $|S| \cdot |A| \cdot |S|$ transitions, the bound follows.
- 2. Lines 8 and 11 are executed $O(|S|^3 \cdot |A|)$ times. They are executed at most once for each combination s, s', s'', a, because no element is added to $\hat{\delta}$ twice.
- 3. Line 4 is executed $O(|S|^3 \cdot |A|)$ times. By 2., $O(|S|^3 \cdot |A|)$ elements are added to ρ during the execution of the algorithm, and so $O(|S|^3 \cdot |A|)$ elements are have been removed from it after termination.
- 4. Lines 1, 2, and 13 take together $O(|S|^2 \cdot |A|)$ time.
- 5. The overall time complexity is $O(|S|^3 \cdot |A|)$.

Space complexity: since ρ and $\hat{\delta}$ do not contain duplicates, they require $O(|S|^2 \cdot |A|)$ space.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・