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Faults

1. Major issue in distributed systems is faults (hardware or
software)

2. Strategies for handling faults: fault detection and tolerance

3. Fault detection: aim is to detect a fault before it causes
serious problems

4. Fault tolerance: proper system operation continues in
presence of faults
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Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter

2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.



Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component

3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.



Simple TMR

I Describe a simple TMR system and show that if the number
of simultaneous faults is at most one then it behaves the same
as a fault-free system

I Agent S receives input at in and passes it to the modules Mi ,
1 ≤ i ≤ 3

I Agent Mi receives input at port mii and passes output at mo
which may be corrupted

I Agent V receives outputs at mo and passes the majority
output value to out

I Add acknowledgement between V and S
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Simple TMR II

S
def
= in(x).(mi1(x).(mi2(x).mi3(x).S ′ + mi3(x).mi2.S

′)
+ (mi2(x) . . .)
+ (mi3(x) . . .) . . . . . . . . .)

S ′ def
= ok.S

Mi
def
= mii (x).(mo(x).Mi +

∑{mo(v).Mi : v ∈ D})
V

def
= mo(x1).mo(x2).mo(x3).

if x1 = x2 then out(x1).V ′ else out(x3).V ′

V ′ def
= ok.V

TMR1 ≡ (S |M1|M2|M3|V )\{mii , mo, ok}

Note TMR1 6≈ Cop Why?
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Simple TMR III

I Need to capture that TMR1 behaves like Cop if at most one
module produces a fault.

I Exercise: How to do this ?

I Let MPi , 1 ≤ i ≤ 3, be a perfect module.

MPi
def
= mii (x).mo(x).MPi

I Instead of

TMR1 ≡ (S |M1|M2|M3|V )\{mii , mo, ok}

assume just one faulty module

TMR′
1 ≡ (S |M1|MP2|MP3|V )\{mii , mo, ok}

I Now TMR′
1 ≈ Cop

I Exercise: produce the weak bisimulation
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TMR with error detection

A more realistic TMR involves error detection.

I the interface includes faulti and detecti ports (as well as
in and out)

I faulti models module faults

I to detect faults we add to each basic module a disagreement
detector that compares the value computed by the module
with the majority value reported by voter.

I Components
S splitter
Mi and Di modules and detectors
V voter
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TMR with error detection II

S
def
= in(x).(mi1(x).(mi2(x).mi3(x).ok.S + mi3(x).mi2.ok.S)

+ (mi2(x) . . .) + (mi3(x) . . .) . . . . . . . . .)

M ′
i

def
= mii (x).(moi (x).M ′

i + fault.
∑{moi (v).M ′

i : v ∈ D})
Di

def
= moi (x).do(x).D ′

i (x)

D ′
i (x)

def
= vo(y).(if x 6= y then detecti .Di else Di )

V ′ def
= do(x1).do(x2).do(x3).if x1 = x2 then V ′′(x1) else V ′′(x3)

V ′′(x)
def
= vo(x).vo(x).vo(x).out(x).ok.V ′

TMR2 ≡ (S |M ′
1|D1|M ′

2|D2|M ′
3|D3|V ′)\{mii , doi , voi , moi , ok}

TMR with error detection III

I What is the relationship between TMR1 and TMR2?

I Problem TMR2 has observable actions fault and detecti

(besides in and out)

I How can we “abstract” from them?
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Abstracting actions I

I Suppose we have system W that can do actions K and
system W ′ that can do K and the extra action a.

I We want to relate W and W ′. We can abstract from a by
“transforming” it into τ .

I Let A
def
= a.A

I Let W ′′ ≡ (W ′|A)\{a}
I Now we can ask: W ≈W ′′ ?
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Concurrent systems: alternatives/extensions

I Lots more examples of systems defined in CCS: recent
example is web services

I Alternatives other process calculi (CSP, . . .), petri nets,
IO-automata, . . .

I Maintain basic model of transition systems (vertices as
states/processes, edges as transitions)

I Correctness through equivalence and model-checking

I Extensions pi-calculus (for mobility), adding quantities (time,
probability, . . .) for modelling embedded/hybrid/biological
systems

I Requires changes to basic model of transition graphs

I Correctness is more complex (timed/probabilistic/. . .
bisimulations and temporal logics)

I Finish course: algorithms for model checking and equivalence
checking on finite transition systems
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