
Communication and Concurrency
Lecture 14

Colin Stirling (cps)

School of Informatics

7th November 2013

Faults

1. Major issue in distributed systems is faults (hardware or
software)

2. Strategies for handling faults: fault detection and tolerance

3. Fault detection: aim is to detect a fault before it causes
serious problems

4. Fault tolerance: proper system operation continues in
presence of faults

Faults

1. Major issue in distributed systems is faults (hardware or
software)

2. Strategies for handling faults: fault detection and tolerance

3. Fault detection: aim is to detect a fault before it causes
serious problems

4. Fault tolerance: proper system operation continues in
presence of faults

Faults

1. Major issue in distributed systems is faults (hardware or
software)

2. Strategies for handling faults: fault detection and tolerance

3. Fault detection: aim is to detect a fault before it causes
serious problems

4. Fault tolerance: proper system operation continues in
presence of faults

Faults

1. Major issue in distributed systems is faults (hardware or
software)

2. Strategies for handling faults: fault detection and tolerance

3. Fault detection: aim is to detect a fault before it causes
serious problems

4. Fault tolerance: proper system operation continues in
presence of faults

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter

2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component

3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Triple modular redundancy

I Following is from Bruns, “Distributed systems analysis with
CCS”, Prentice-Hall, 1997.

I Redundancy of components: basic technique for fault
detection and tolerance

I Consider replacing one component that on input gives an
output by

1. three copies of the system using a splitter and a voter
2. on input the splitter sends it to each duplicated component
3. the voter accepts outputs and outputs majority value

I It works in presence of both “transient” and “permanent”
faults

I Let TMR be triple modular redundancy.

Simple TMR

I Describe a simple TMR system and show that if the number
of simultaneous faults is at most one then it behaves the same
as a fault-free system

I Agent S receives input at in and passes it to the modules Mi ,
1 ≤ i ≤ 3

I Agent Mi receives input at port mii and passes output at mo
which may be corrupted

I Agent V receives outputs at mo and passes the majority
output value to out

I Add acknowledgement between V and S

Simple TMR

I Describe a simple TMR system and show that if the number
of simultaneous faults is at most one then it behaves the same
as a fault-free system

I Agent S receives input at in and passes it to the modules Mi ,
1 ≤ i ≤ 3

I Agent Mi receives input at port mii and passes output at mo
which may be corrupted

I Agent V receives outputs at mo and passes the majority
output value to out

I Add acknowledgement between V and S

Simple TMR

I Describe a simple TMR system and show that if the number
of simultaneous faults is at most one then it behaves the same
as a fault-free system

I Agent S receives input at in and passes it to the modules Mi ,
1 ≤ i ≤ 3

I Agent Mi receives input at port mii and passes output at mo
which may be corrupted

I Agent V receives outputs at mo and passes the majority
output value to out

I Add acknowledgement between V and S

Simple TMR

I Describe a simple TMR system and show that if the number
of simultaneous faults is at most one then it behaves the same
as a fault-free system

I Agent S receives input at in and passes it to the modules Mi ,
1 ≤ i ≤ 3

I Agent Mi receives input at port mii and passes output at mo
which may be corrupted

I Agent V receives outputs at mo and passes the majority
output value to out

I Add acknowledgement between V and S

Simple TMR

I Describe a simple TMR system and show that if the number
of simultaneous faults is at most one then it behaves the same
as a fault-free system

I Agent S receives input at in and passes it to the modules Mi ,
1 ≤ i ≤ 3

I Agent Mi receives input at port mii and passes output at mo
which may be corrupted

I Agent V receives outputs at mo and passes the majority
output value to out

I Add acknowledgement between V and S

Simple TMR II

S
def
= in(x).(mi1(x).(mi2(x).mi3(x).S ′ + mi3(x).mi2.S

′)
+ (mi2(x) . . .)
+ (mi3(x) . . .))

S ′ def
= ok.S

Mi
def
= mii (x).(mo(x).Mi +

∑{mo(v).Mi : v ∈ D})
V

def
= mo(x1).mo(x2).mo(x3).

if x1 = x2 then out(x1).V ′ else out(x3).V ′

V ′ def
= ok.V

TMR1 ≡ (S |M1|M2|M3|V)\{mii , mo, ok}

Note TMR1 6≈ Cop Why?

Simple TMR II

S
def
= in(x).(mi1(x).(mi2(x).mi3(x).S ′ + mi3(x).mi2.S

′)
+ (mi2(x) . . .)
+ (mi3(x) . . .))

S ′ def
= ok.S

Mi
def
= mii (x).(mo(x).Mi +

∑{mo(v).Mi : v ∈ D})
V

def
= mo(x1).mo(x2).mo(x3).

if x1 = x2 then out(x1).V ′ else out(x3).V ′

V ′ def
= ok.V

TMR1 ≡ (S |M1|M2|M3|V)\{mii , mo, ok}

Note TMR1 6≈ Cop Why?

Simple TMR III

I Need to capture that TMR1 behaves like Cop if at most one
module produces a fault.

I Exercise: How to do this ?

I Let MPi , 1 ≤ i ≤ 3, be a perfect module.

MPi
def
= mii (x).mo(x).MPi

I Instead of

TMR1 ≡ (S |M1|M2|M3|V)\{mii , mo, ok}

assume just one faulty module

TMR′
1 ≡ (S |M1|MP2|MP3|V)\{mii , mo, ok}

I Now TMR′
1 ≈ Cop

I Exercise: produce the weak bisimulation

Simple TMR III

I Need to capture that TMR1 behaves like Cop if at most one
module produces a fault.

I Exercise: How to do this ?

I Let MPi , 1 ≤ i ≤ 3, be a perfect module.

MPi
def
= mii (x).mo(x).MPi

I Instead of

TMR1 ≡ (S |M1|M2|M3|V)\{mii , mo, ok}

assume just one faulty module

TMR′
1 ≡ (S |M1|MP2|MP3|V)\{mii , mo, ok}

I Now TMR′
1 ≈ Cop

I Exercise: produce the weak bisimulation

Simple TMR III

I Need to capture that TMR1 behaves like Cop if at most one
module produces a fault.

I Exercise: How to do this ?

I Let MPi , 1 ≤ i ≤ 3, be a perfect module.

MPi
def
= mii (x).mo(x).MPi

I Instead of

TMR1 ≡ (S |M1|M2|M3|V)\{mii , mo, ok}

assume just one faulty module

TMR′
1 ≡ (S |M1|MP2|MP3|V)\{mii , mo, ok}

I Now TMR′
1 ≈ Cop

I Exercise: produce the weak bisimulation

Simple TMR III

I Need to capture that TMR1 behaves like Cop if at most one
module produces a fault.

I Exercise: How to do this ?

I Let MPi , 1 ≤ i ≤ 3, be a perfect module.

MPi
def
= mii (x).mo(x).MPi

I Instead of

TMR1 ≡ (S |M1|M2|M3|V)\{mii , mo, ok}

assume just one faulty module

TMR′
1 ≡ (S |M1|MP2|MP3|V)\{mii , mo, ok}

I Now TMR′
1 ≈ Cop

I Exercise: produce the weak bisimulation

Simple TMR III

I Need to capture that TMR1 behaves like Cop if at most one
module produces a fault.

I Exercise: How to do this ?

I Let MPi , 1 ≤ i ≤ 3, be a perfect module.

MPi
def
= mii (x).mo(x).MPi

I Instead of

TMR1 ≡ (S |M1|M2|M3|V)\{mii , mo, ok}

assume just one faulty module

TMR′
1 ≡ (S |M1|MP2|MP3|V)\{mii , mo, ok}

I Now TMR′
1 ≈ Cop

I Exercise: produce the weak bisimulation

Simple TMR III

I Need to capture that TMR1 behaves like Cop if at most one
module produces a fault.

I Exercise: How to do this ?

I Let MPi , 1 ≤ i ≤ 3, be a perfect module.

MPi
def
= mii (x).mo(x).MPi

I Instead of

TMR1 ≡ (S |M1|M2|M3|V)\{mii , mo, ok}

assume just one faulty module

TMR′
1 ≡ (S |M1|MP2|MP3|V)\{mii , mo, ok}

I Now TMR′
1 ≈ Cop

I Exercise: produce the weak bisimulation

TMR with error detection

A more realistic TMR involves error detection.

I the interface includes faulti and detecti ports (as well as
in and out)

I faulti models module faults

I to detect faults we add to each basic module a disagreement
detector that compares the value computed by the module
with the majority value reported by voter.

I Components
S splitter
Mi and Di modules and detectors
V voter

TMR with error detection

A more realistic TMR involves error detection.

I the interface includes faulti and detecti ports (as well as
in and out)

I faulti models module faults

I to detect faults we add to each basic module a disagreement
detector that compares the value computed by the module
with the majority value reported by voter.

I Components
S splitter
Mi and Di modules and detectors
V voter

TMR with error detection

A more realistic TMR involves error detection.

I the interface includes faulti and detecti ports (as well as
in and out)

I faulti models module faults

I to detect faults we add to each basic module a disagreement
detector that compares the value computed by the module
with the majority value reported by voter.

I Components
S splitter
Mi and Di modules and detectors
V voter

TMR with error detection

A more realistic TMR involves error detection.

I the interface includes faulti and detecti ports (as well as
in and out)

I faulti models module faults

I to detect faults we add to each basic module a disagreement
detector that compares the value computed by the module
with the majority value reported by voter.

I Components
S splitter
Mi and Di modules and detectors
V voter

TMR with error detection II

S
def
= in(x).(mi1(x).(mi2(x).mi3(x).ok.S + mi3(x).mi2.ok.S)

+ (mi2(x) . . .) + (mi3(x) . . .))

M ′
i

def
= mii (x).(moi (x).M ′

i + fault.
∑{moi (v).M ′

i : v ∈ D})
Di

def
= moi (x).do(x).D ′

i (x)

D ′
i (x)

def
= vo(y).(if x 6= y then detecti .Di else Di)

V ′ def
= do(x1).do(x2).do(x3).if x1 = x2 then V ′′(x1) else V ′′(x3)

V ′′(x)
def
= vo(x).vo(x).vo(x).out(x).ok.V ′

TMR2 ≡ (S |M ′
1|D1|M ′

2|D2|M ′
3|D3|V ′)\{mii , doi , voi , moi , ok}

TMR with error detection III

I What is the relationship between TMR1 and TMR2?

I Problem TMR2 has observable actions fault and detecti

(besides in and out)

I How can we “abstract” from them?

TMR with error detection III

I What is the relationship between TMR1 and TMR2?

I Problem TMR2 has observable actions fault and detecti

(besides in and out)

I How can we “abstract” from them?

TMR with error detection III

I What is the relationship between TMR1 and TMR2?

I Problem TMR2 has observable actions fault and detecti

(besides in and out)

I How can we “abstract” from them?

Abstracting actions I

I Suppose we have system W that can do actions K and
system W ′ that can do K and the extra action a.

I We want to relate W and W ′. We can abstract from a by
“transforming” it into τ .

I Let A
def
= a.A

I Let W ′′ ≡ (W ′|A)\{a}
I Now we can ask: W ≈W ′′ ?

Abstracting actions I

I Suppose we have system W that can do actions K and
system W ′ that can do K and the extra action a.

I We want to relate W and W ′. We can abstract from a by
“transforming” it into τ .

I Let A
def
= a.A

I Let W ′′ ≡ (W ′|A)\{a}
I Now we can ask: W ≈W ′′ ?

Abstracting actions I

I Suppose we have system W that can do actions K and
system W ′ that can do K and the extra action a.

I We want to relate W and W ′. We can abstract from a by
“transforming” it into τ .

I Let A
def
= a.A

I Let W ′′ ≡ (W ′|A)\{a}
I Now we can ask: W ≈W ′′ ?

Abstracting actions I

I Suppose we have system W that can do actions K and
system W ′ that can do K and the extra action a.

I We want to relate W and W ′. We can abstract from a by
“transforming” it into τ .

I Let A
def
= a.A

I Let W ′′ ≡ (W ′|A)\{a}

I Now we can ask: W ≈W ′′ ?

Abstracting actions I

I Suppose we have system W that can do actions K and
system W ′ that can do K and the extra action a.

I We want to relate W and W ′. We can abstract from a by
“transforming” it into τ .

I Let A
def
= a.A

I Let W ′′ ≡ (W ′|A)\{a}
I Now we can ask: W ≈W ′′ ?

Abstracting actions II

I Abstract from actions

Ab
def
= fault.Ab +

∑{detecti .Ab : 1 ≤ i ≤ 3}

TMR′
2 ≡ (TMR2|Ab)\{fault, detecti}

I Exercise Prove that TMR1 ≈ TMR′
2

Abstracting actions II

I Abstract from actions

Ab
def
= fault.Ab +

∑{detecti .Ab : 1 ≤ i ≤ 3}

TMR′
2 ≡ (TMR2|Ab)\{fault, detecti}

I Exercise Prove that TMR1 ≈ TMR′
2

Concurrent systems: alternatives/extensions

I Lots more examples of systems defined in CCS: recent
example is web services

I Alternatives other process calculi (CSP, . . .), petri nets,
IO-automata, . . .

I Maintain basic model of transition systems (vertices as
states/processes, edges as transitions)

I Correctness through equivalence and model-checking

I Extensions pi-calculus (for mobility), adding quantities (time,
probability, . . .) for modelling embedded/hybrid/biological
systems

I Requires changes to basic model of transition graphs

I Correctness is more complex (timed/probabilistic/. . .
bisimulations and temporal logics)

I Finish course: algorithms for model checking and equivalence
checking on finite transition systems

Concurrent systems: alternatives/extensions

I Lots more examples of systems defined in CCS: recent
example is web services

I Alternatives other process calculi (CSP, . . .), petri nets,
IO-automata, . . .

I Maintain basic model of transition systems (vertices as
states/processes, edges as transitions)

I Correctness through equivalence and model-checking

I Extensions pi-calculus (for mobility), adding quantities (time,
probability, . . .) for modelling embedded/hybrid/biological
systems

I Requires changes to basic model of transition graphs

I Correctness is more complex (timed/probabilistic/. . .
bisimulations and temporal logics)

I Finish course: algorithms for model checking and equivalence
checking on finite transition systems

Concurrent systems: alternatives/extensions

I Lots more examples of systems defined in CCS: recent
example is web services

I Alternatives other process calculi (CSP, . . .), petri nets,
IO-automata, . . .

I Maintain basic model of transition systems (vertices as
states/processes, edges as transitions)

I Correctness through equivalence and model-checking

I Extensions pi-calculus (for mobility), adding quantities (time,
probability, . . .) for modelling embedded/hybrid/biological
systems

I Requires changes to basic model of transition graphs

I Correctness is more complex (timed/probabilistic/. . .
bisimulations and temporal logics)

I Finish course: algorithms for model checking and equivalence
checking on finite transition systems

Concurrent systems: alternatives/extensions

I Lots more examples of systems defined in CCS: recent
example is web services

I Alternatives other process calculi (CSP, . . .), petri nets,
IO-automata, . . .

I Maintain basic model of transition systems (vertices as
states/processes, edges as transitions)

I Correctness through equivalence and model-checking

I Extensions pi-calculus (for mobility), adding quantities (time,
probability, . . .) for modelling embedded/hybrid/biological
systems

I Requires changes to basic model of transition graphs

I Correctness is more complex (timed/probabilistic/. . .
bisimulations and temporal logics)

I Finish course: algorithms for model checking and equivalence
checking on finite transition systems

Concurrent systems: alternatives/extensions

I Lots more examples of systems defined in CCS: recent
example is web services

I Alternatives other process calculi (CSP, . . .), petri nets,
IO-automata, . . .

I Maintain basic model of transition systems (vertices as
states/processes, edges as transitions)

I Correctness through equivalence and model-checking

I Extensions pi-calculus (for mobility), adding quantities (time,
probability, . . .) for modelling embedded/hybrid/biological
systems

I Requires changes to basic model of transition graphs

I Correctness is more complex (timed/probabilistic/. . .
bisimulations and temporal logics)

I Finish course: algorithms for model checking and equivalence
checking on finite transition systems

Concurrent systems: alternatives/extensions

I Lots more examples of systems defined in CCS: recent
example is web services

I Alternatives other process calculi (CSP, . . .), petri nets,
IO-automata, . . .

I Maintain basic model of transition systems (vertices as
states/processes, edges as transitions)

I Correctness through equivalence and model-checking

I Extensions pi-calculus (for mobility), adding quantities (time,
probability, . . .) for modelling embedded/hybrid/biological
systems

I Requires changes to basic model of transition graphs

I Correctness is more complex (timed/probabilistic/. . .
bisimulations and temporal logics)

I Finish course: algorithms for model checking and equivalence
checking on finite transition systems

Concurrent systems: alternatives/extensions

I Lots more examples of systems defined in CCS: recent
example is web services

I Alternatives other process calculi (CSP, . . .), petri nets,
IO-automata, . . .

I Maintain basic model of transition systems (vertices as
states/processes, edges as transitions)

I Correctness through equivalence and model-checking

I Extensions pi-calculus (for mobility), adding quantities (time,
probability, . . .) for modelling embedded/hybrid/biological
systems

I Requires changes to basic model of transition graphs

I Correctness is more complex (timed/probabilistic/. . .
bisimulations and temporal logics)

I Finish course: algorithms for model checking and equivalence
checking on finite transition systems

Concurrent systems: alternatives/extensions

I Lots more examples of systems defined in CCS: recent
example is web services

I Alternatives other process calculi (CSP, . . .), petri nets,
IO-automata, . . .

I Maintain basic model of transition systems (vertices as
states/processes, edges as transitions)

I Correctness through equivalence and model-checking

I Extensions pi-calculus (for mobility), adding quantities (time,
probability, . . .) for modelling embedded/hybrid/biological
systems

I Requires changes to basic model of transition graphs

I Correctness is more complex (timed/probabilistic/. . .
bisimulations and temporal logics)

I Finish course: algorithms for model checking and equivalence
checking on finite transition systems

