Notation

- Assume P contains port b and Q contains port a
- Define $P \sim Q$ linking b to a: $(P[c/b] \mid Q[c/a])\{c\}$
 where c is a new port (not contained in P or Q)

Example: buffers $B \overset{\text{def}}{=} i(x).o(x).B$

\[
\begin{align*}
B_1 & \equiv B[o_1/o] \\
B_{j+1} & \equiv B[o_j/i, o_{j+1}/o] \quad 1 \leq j < n - 1 \\
B_n & \equiv B[o_{n-1}/i]
\end{align*}
\]
Assume P contains port b and Q contains port a
Define $P \rightsquigarrow Q$ linking b to a: $(P[c/b] \mid Q[c/a])\setminus\{c\}$
where c is a new port (not contained in P or Q)

Example: buffers $B \overset{\text{def}}{=} i(x).\sigma(x).B$

Want a sorter Sorter_n, $n \geq 0$, capable of sorting n-length sequences of positive integers

Where a system of size $n + 1$ is defined in terms of a system of size n. (From Milner's book 136ff.)

Assume Sorter_n has ports in, out
Sorting machine example

- Where a system of size \(n + 1 \) is defined in terms of a system of size \(n \). (From Milner’s book 136ff.)
- Want a sorter \(\text{Sorter}_n \), \(n \geq 0 \), capable of sorting \(n \)-length sequences of positive integers
- Assume \(\text{Sorter}_n \) has ports \(\text{in}, \text{out} \)
- It accepts exactly \(n \) integers one by one at port \(\text{in} \);
- Then it delivers them one by one in descending order at \(\text{out} \), terminated by a zero
- And returns to start state

Sorting machine specification

- A multiset is a set with possibly multiple elements

\[\{1, 2, 1\} = \{2, 1, 1\} \neq \{1, 2\} \]

\(S \) ranges over multisets of integers and \(\max(S) \) \(\min(S) \) are maximum and minimum elements of \(S \)
Sorting machine specification

A multiset is a set with possibly multiple elements:

\[\{1, 2, 1\} = \{2, 1, 1\} \neq \{1, 2\} \]

\(S \) ranges over multisets of integers and \(\max(S) \) \(\min(S) \) are maximum and minimum elements of \(S \).

Spec\(_n\) def \(\overset{\text{def}}{=}\) \(\text{in}(x_1) \ldots \text{in}(x_n).\text{Hold}_n(\{x_1, \ldots, x_n\})\)

\(\text{Hold}_n(S) \) def \(\overset{\text{def}}{=}\) \(\text{out}(\max(S)).\text{Hold}_n(S - \{\max(S)\})\)

\(\text{Hold}_n(\emptyset) \) def \(\overset{\text{def}}{=}\) \(\text{out}(0).\text{Spec}_n\)

Sorting machine implementation I

Use \(n \) simple cells \(C \) and a barrier cell \(B \)

C has ports in, down, up, out; B just has in, out
Use n simple cells C and a barrier cell B

C has ports in, down, up, out; B just has in, out

Notation: $C \triangleright C$ where down in first C is linked to in of second C and up of first C is linked to out of second C and then these ports are internalised (restricted upon)

$\text{Sorter}_n \overset{\text{def}}{=} C \triangleright \ldots \triangleright C \triangleright B \ (n \ Cs)$

We need to define B and C so that: $\text{Sorter}_n \approx \text{Spec}_n$

Do it inductively

1. **Base Case:** $B \approx \text{Spec}_0$
2. **General Step:** $\text{Spec}_{n+1} \approx C \triangleright \text{Spec}_n$
3. **Why?** $\text{Sorter}_{n+1} \overset{\text{def}}{=} C \triangleright \text{Sorter}_n$
Sorting machine implementation II

- B is straightforward: $B \overset{\text{def}}{=} \text{out}(0).B$
- C is more involved

 \[
 \begin{align*}
 C & \overset{\text{def}}{=} \text{in}(x).C'(x) \\
 C'(x) & \overset{\text{def}}{=} \text{down}(x).C + \text{up}(y).D(x,y) \\
 D(x,y) & \overset{\text{def}}{=} \text{out}(\max\{x,y\}).C''(\min\{x,y\}) \\
 C''(x) & \overset{\text{def}}{=} \text{if } x = 0 \text{ then } \text{out}(0).C \text{ else } C'(x)
 \end{align*}
 \]

Proof of correctness

- Base Case: $B \approx \text{Spec}_0$

- Example: Sorter$_3$: $C \leadsto C \leadsto C \leadsto B$
Proof of correctness

- **Base Case:** $B \approx \text{Spec}_0$
- **General Step:** $\text{Spec}_{n+1} \approx C \bowtie \text{Spec}_n \approx$

- $(\text{in}(x_1).C'(x_1)) \bowtie (\text{in}(z_1) \ldots \text{in}(z_n).\text{Hold}_n({z_1, \ldots, z_n})) \approx$

- $\text{in}(x_1).\tau.((\text{in}(z_2) \ldots \text{in}(z_n).\text{Hold}_n({x_1, z_2, \ldots, z_n}))) \approx$
Proof of correctness

- **Base Case:** $B \approx \text{Spec}_0$
- **General Step:** $\text{Spec}_{n+1} \approx C \dashv \text{Spec}_n \approx$
- $(\text{in}(x_1).C'(x_1)) \dashv (\text{in}(z_1) \ldots \text{in}(z_n).\text{Hold}_n(\{z_1, \ldots, z_n\})) \approx$
- $\text{in}(x_1).((\text{down}(x_1).C + \ldots) \dashv$
 $(\text{in}(z_1) \ldots \text{in}(z_n).\text{Hold}_n(\{z_1, \ldots, z_n\})) \approx$
- $\text{in}(x_1).\tau.(C \dashv (\text{in}(z_2) \ldots \text{in}(z_n).\text{Hold}_n(\{x_1, z_2, \ldots, z_n\})))$
 $\approx \vdash$
- $\text{in}(x_1) \ldots \text{in}(x_n).\text{in}(x_{n+1}).(C'(x_{n+1}) \dashv \text{Hold}_n(\{x_1, \ldots, x_n\}))$

Proof of correctness

- **Base Case:** $B \approx \text{Spec}_0$
- **General Step:** $\text{Spec}_{n+1} \approx C \dashv \text{Spec}_n \approx$
- $(\text{in}(x_1).C'(x_1)) \dashv (\text{in}(z_1) \ldots \text{in}(z_n).\text{Hold}_n(\{z_1, \ldots, z_n\})) \approx$
- $\text{in}(x_1).((\text{down}(x_1).C + \ldots) \dashv$
 $(\text{in}(z_1) \ldots \text{in}(z_n).\text{Hold}_n(\{z_1, \ldots, z_n\})) \approx$
- $\text{in}(x_1).\tau.(C \dashv (\text{in}(z_2) \ldots \text{in}(z_n).\text{Hold}_n(\{x_1, z_2, \ldots, z_n\})))$
 $\approx \vdash$
- $\text{in}(x_1) \ldots \text{in}(x_n).\text{in}(x_{n+1}).(C'(x_{n+1}) \dashv \text{Hold}_n(\{x_1, \ldots, x_n\}))$
- **Result follows using following lemma where if S is any multiset of size k and $\{x\} \cup S = \{y_1, \ldots, y_{k+1}\}$ and $y_1 \geq \ldots \geq y_{k+1}$ then**

 $C'(x) \dashv \text{Hold}_n(S) \approx$

 $\tau.\text{out}(y_1) \ldots \text{out}(y_{k+1}).\text{out}(0).(C \dashv \text{Spec}_n)$