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Showing bisimilarity
To establish E ∼ F

1. Present a candidate relation R with (E ,F ) ∈ R

2. Prove that indeed it obeys the hereditary conditions

Example: (A|B)\c ∼ C1

A
def
= a.c.A

B
def
= c .b.B

C0
def
= b.C1 + a.C2

C1
def
= a.C3

C2
def
= b.C3

C3
def
= τ.C0

R below is a bisimulation

{((A|B)\c ,C1), ((c.A|B)\c ,C3)
((A|b.B)\c ,C0), ((c.A|b.B)\c ,C2)}
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Showing Bisimilarity II

Same sort of argument establishes that ∼ is a congruence.

1. if E ∼ F then G |E ∼ G |F
2. Proof: Assume that E ∼ F , so there is a bisimulation B with

(E ,F ) ∈ B.

3. Let C be the relation

{(H|E ′,H|F ′) : (E ′,F ′) ∈ B}

4. Show that C is a bisimulation . . .



Some Results

Id = {(E ,E )}
B−1 = {(E ,F ) : (F ,E ) ∈ B}
B1B2 = {(E ,G ) : there is F . (E ,F ) ∈ B1

and (F ,G ) ∈ B2}

Proposition Assume Bi (i = 1, 2, . . .) is a bisimulation. Then the
following are bisimulations:

1. Id

2. B−1
i

3. B1B2

4.
⋃
{Bi : i ≥ 1}

Corollary ∼ is the largest bisimulation



A bigger example: Cnt ∼ Ct′0

Cnt
def
= up.(Cnt | down.0)

Ct′0
def
= up.Ct′1

Ct′i+1
def
= up.Ct′i+2 + down.Ct′i i ≥ 0.

P0 = {Cnt | 0j : j ≥ 0}
Pi+1 = {E | 0j | down.0 | 0k : E ∈ Pi and j ≥ 0 and k ≥ 0}

where F | 00 = F and F | 0i+1 = F | 0i | 0 and brackets are
dropped between parallel components.

B = {(E , Ct′i ) : i ≥ 0 and E ∈ Pi} is a bisimulation
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More Properties I

Proposition

1. E + F ∼ F + E

2. E + (F + G ) ∼ (E + F ) + G

3. E + 0 ∼ E

4. E + E ∼ E

Proposition

1. E |F ∼ F |E
2. E |(F |G ) ∼ (E |F )|G
3. E |0 ∼ E



More Properties I

Proposition

1. E + F ∼ F + E

2. E + (F + G ) ∼ (E + F ) + G

3. E + 0 ∼ E

4. E + E ∼ E

Proposition

1. E |F ∼ F |E
2. E |(F |G ) ∼ (E |F )|G
3. E |0 ∼ E



More Properties II

Proposition

1. (E + F )\K ∼ E\K + F\K
2. (a.E )\K ∼ 0 if a ∈ K ∪ K

3. (a.E )\K ∼ a.(E\K ) if a 6∈ K ∪ K



Expansion law

I Assume xi ∼
∑
{aij .xij : 1 ≤ j ≤ ni} for i : 1 ≤ i ≤ m

I Then x1 | . . . | xm ∼ SUM1 + SUM2

I SUM1 is
∑
{aij .yij : 1 ≤ i ≤ m and 1 ≤ j ≤ ni}

I SUM2 is
∑
{τ.yklij : 1 ≤ k < i ≤ m and akl = aij}

I yij = x1 | . . . | xi−1 | xij | xi+1 | . . . | xm

I yklij = x1 | . . . | xk−1 | xkl | xk+1 | . . . | xij | xi+1 | . . . | xm

I Example
x1 ∼ a.x11 + b.x12 + a.x13

x2 ∼ a.x21 + c .x22,

I

x1|x2 ∼ a.(x11|x2) + b.(x12|x2) + a.(x13|x2)+
a.(x1|x21)+
c .(x1|x22) + τ.(x11|x21) + τ.(x13|x21).
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Weak (observable) bisimulations

I A binary relation B between processes is a weak (or
observable) bisimulation provided that, whenever (E ,F ) ∈ B
and a ∈ O ∪ {ε},

I if E
a

=⇒ E ′ then F
a

=⇒ F ′ for some F ′ such that (E ′,F ′) ∈ B
and

I if F
a

=⇒ F ′ then E
a

=⇒ E ′ for some E ′ such that (E ′,F ′) ∈ B

I Two processes E and F are weak bisimulation equivalent (or
weakly bisimilar) if there is a weak bisimulation relation B
such that (E ,F ) ∈ B. We write E ≈ F if E and F are weakly
bisimilar
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Exercise

Which of the following are weakly bisimilar?

Y/N

a.τ.b.0 a.b.0

a.(b.0 + τ.c.0) a.(b.0 + c.0)

a.(b.0 + τ.c.0) a.(b.0 + τ.c.0) + a.c.0

a.0 + b.0 + τ.b.0 a.0 + τ.b.0

a.0 + b.0 + τ.b.0 a.0 + b.0

a.(b.0 + τ.b.0) a.b.0



Exercise

Which of the following are weakly bisimilar?

Y/N

a.τ.b.0 a.b.0 Y

a.(b.0 + τ.c.0) a.(b.0 + c.0) N

a.(b.0 + τ.c.0) a.(b.0 + τ.c.0) + a.c.0 Y

a.0 + b.0 + τ.b.0 a.0 + τ.b.0 Y

a.0 + b.0 + τ.b.0 a.0 + b.0 N

a.(b.0 + τ.b.0) a.b.0 Y



Showing weak bisimilarity ≈

1. Present a candidate relation R with (E ,F ) ∈ R

2. Prove that indeed it obeys the hereditary conditions

3. Example

A0
def
= a.A0 + b.A1 + τ.A1

A1
def
= a.A1 + τ.A2

A2
def
= b.A0

B1
def
= a.B1 + τ.B2

B2
def
= b.B1

4. A0 ≈ B1

{(A0,B1), (A1,B1), (A2,B2)}

is a weak bisimulation
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Weak bisimulation: less redundancy

I For a ∈ A let â be a if a 6= τ , and let τ̂ be ε.

I A binary relation B between processes is an ob bisimulation
just in case whenever (E ,F ) ∈ B and a ∈ A,

1. if E
a−→ E ′ then F

â
=⇒ F ′ for some F ′ such that (E ′,F ′) ∈ B,

2. if F
a−→ F ′ then E

â
=⇒ E ′ for some E ′ such that (E ′,F ′) ∈ B.

I Two processes are ob equivalent, denoted by ≈′, if they are
related by an ob bisimulation relation.

I Proposition

1. B is a weak bisim if, and only if B is an ob bisim
2. ≈ = ≈′



Weak bisimulation: less redundancy
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â
=⇒ E ′ for some E ′ such that (E ′,F ′) ∈ B.

I Two processes are ob equivalent, denoted by ≈′, if they are
related by an ob bisimulation relation.

I Proposition

1. B is a weak bisim if, and only if B is an ob bisim
2. ≈ = ≈′



Weak bisimulation: less redundancy

I For a ∈ A let â be a if a 6= τ , and let τ̂ be ε.
I A binary relation B between processes is an ob bisimulation

just in case whenever (E ,F ) ∈ B and a ∈ A,

1. if E
a−→ E ′ then F

â
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Protocol that may lose messages

Sender
def
= in(x).sm(x).Send1(x)

Send1(x)
def
= ms.sm(x).Send1(x) + ok.Sender

Medium
def
= sm(y).Med1(y)

Med1(y)
def
= mr(y).Medium + τ.ms.Medium

Receiver
def
= mr(x).out(x).ok.Receiver

Protocol ≡ (Sender | Medium | Receiver)\{sm, ms, mr, ok}

Cop
def
= in(x).out(x).Cop



Protocol ≈ Cop

Let B be the following relation

{(Protocol, Cop)}∪
{((Send1(m) | Medium | ok.Receiver)\J,

Cop) : m ∈ D}∪
{((sm(m).Send1(m) | Medium | Receiver)\J,

out(m).Cop) : m ∈ D}∪
{((Send1(m) | Med1(m) | Receiver)\J,

out(m).Cop) : m ∈ D}∪
{((Send1(m) | Medium | out(m).ok.Receiver)\J,

out(m).Cop) : m ∈ D}∪
{((Send1(m) | ms.Medium | Receiver)\J,

out(m).Cop) : m ∈ D}

B is a weak bisimulation



Properties of weak bisimulation

Id = {(E ,E )}
B−1 = {(E ,F ) : (F ,E ) ∈ B}
B1B2 = {(E ,G ) : there is F . (E ,F ) ∈ B1

and (F ,G ) ∈ B2}

Proposition Assume Bi (i = 1, 2, . . .) is a weak bisimulation. Then
the following are weak bisimulations:

1. Id

2. B−1
i

3. B1B2

4.
⋃
{Bi : i ≥ 1}

Corollary ≈ is the largest weak bisimulation
Proposition If E ∼ F then E ≈ F
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Tau laws

1. a.τ.E ≈ a.E

2. E + τ.E ≈ τ.E
3. a.(E + τ.F ) + a.F ≈ a.(E + τ.F )



But

I ≈ is not a congruence with respect to the + operator. (It is a
congruence w.r.t the other operators of CCS.)
Due to initial preemptive power of τ

I E ≈ τ.E but many cases E + F 6≈ τ.E + F
a.0 ≈ τ.a.0 but a.0 + b.0 6≈ τ.a.0 + b.0

I ≈c is the largest subset of ≈ that is also a congruence.

I ≈ is a congruence for all the other operators of CCS.
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Defining ≈c directly

E ≈c F iff

1. E ≈ F

2. if E
τ−→ E ′, then F

τ−→ F1
ε

=⇒ F ′ and E ′ ≈ F ′ for some F1

and F ′

3. if F
τ−→ F ′ then E

τ−→ E1
ε

=⇒ E ′ and E ′ ≈ F ′ for some E1

and E ′.
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