Communication and Concurrency Lectures 10 & 11

Colin Stirling (cps)

School of Informatics

21st October 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Showing bisimilarity

To establish $E \sim F$

- 1. Present a candidate relation R with $(E, F) \in R$
- 2. Prove that indeed it obeys the hereditary conditions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Showing bisimilarity

To establish $E \sim F$

1. Present a candidate relation R with $(E, F) \in R$

2. Prove that indeed it obeys the hereditary conditions

Example: $(A|B) \setminus c \sim C_1$

$$A \stackrel{\text{def}}{=} a.\overline{c}.A$$

$$B \stackrel{\text{def}}{=} c.\overline{b}.B$$

$$C_0 \stackrel{\text{def}}{=} \overline{b}.C_1 + a.C_2$$

$$C_1 \stackrel{\text{def}}{=} a.C_3$$

$$C_2 \stackrel{\text{def}}{=} \overline{b}.C_3$$

$$C_3 \stackrel{\text{def}}{=} \tau.C_0$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Showing bisimilarity

To establish $E \sim F$

1. Present a candidate relation R with $(E, F) \in R$

2. Prove that indeed it obeys the hereditary conditions

Example: $(A|B) \setminus c \sim C_1$

$$A \stackrel{\text{def}}{=} a.\overline{c}.A$$

$$B \stackrel{\text{def}}{=} c.\overline{b}.B$$

$$C_0 \stackrel{\text{def}}{=} \overline{b}.C_1 + a.C_2$$

$$C_1 \stackrel{\text{def}}{=} a.C_3$$

$$C_2 \stackrel{\text{def}}{=} \overline{b}.C_3$$

$$C_3 \stackrel{\text{def}}{=} \tau.C_0$$

R below is a bisimulation

$$\{((A|B) \setminus c, C_1), ((\overline{c}.A|B) \setminus c, C_3) \\ ((A|\overline{b}.B) \setminus c, C_0), ((\overline{c}.A|\overline{b}.B) \setminus c, C_2)\}$$

Showing Bisimilarity II

Same sort of argument establishes that \sim is a congruence.

- 1. if $E \sim F$ then $G|E \sim G|F$
- 2. Proof: Assume that $E \sim F$, so there is a bisimulation B with $(E, F) \in B$.
- 3. Let C be the relation

 $\{(H|E',H|F') : (E',F') \in B\}$

4. Show that C is a bisimulation ...

Some Results

$$\begin{array}{rcl} Id & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a bisimulation. Then the following are bisimulations:

1. Id2. B_i^{-1} 3. B_1B_2 4. $\bigcup \{B_i : i \ge 1\}$

Corollary \sim is the largest bisimulation

A bigger example: $Cnt \sim Ct'_0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

A bigger example: $Cnt \sim Ct'_0$

$$\begin{array}{rll} \texttt{Cnt} & \stackrel{\text{def}}{=} & \texttt{up.(Cnt} \mid \texttt{down.0}) \\ \texttt{Ct}_0' & \stackrel{\text{def}}{=} & \texttt{up.Ct}_1' \\ \texttt{Ct}_{i+1}' & \stackrel{\text{def}}{=} & \texttt{up.Ct}_{i+2}' + \texttt{down.Ct}_i' & i \geq 0. \end{array}$$

$$\begin{array}{rcl} P_0 & = & \{ \text{Cnt} \mid 0^j \, : \, j \ge 0 \} \\ P_{i+1} & = & \{ E \mid 0^j \mid \text{down.0} \mid 0^k \, : \, E \in P_i \text{ and } j \ge 0 \text{ and } k \ge 0 \} \end{array}$$

where $F \mid 0^0 = F$ and $F \mid 0^{i+1} = F \mid 0^i \mid 0$ and brackets are dropped between parallel components.

A bigger example: $Cnt \sim Ct'_0$

$$\begin{array}{rll} \texttt{Cnt} & \stackrel{\text{def}}{=} & \texttt{up.(Cnt} \mid \texttt{down.0}) \\ \texttt{Ct}_0' & \stackrel{\text{def}}{=} & \texttt{up.Ct}_1' \\ \texttt{Ct}_{i+1}' & \stackrel{\text{def}}{=} & \texttt{up.Ct}_{i+2}' + \texttt{down.Ct}_i' & i \geq 0. \end{array}$$

$$\begin{array}{rcl} P_0 & = & \{ \text{Cnt} \mid 0^j \, : \, j \ge 0 \} \\ P_{i+1} & = & \{ E \mid 0^j \mid \text{down.0} \mid 0^k \, : \, E \in P_i \text{ and } j \ge 0 \text{ and } k \ge 0 \} \end{array}$$

where $F \mid 0^0 = F$ and $F \mid 0^{i+1} = F \mid 0^i \mid 0$ and brackets are dropped between parallel components.

 $B = \{(E, Ct'_i) : i \ge 0 \text{ and } E \in P_i\}$ is a bisimulation

More Properties I

Proposition

1. $E + F \sim F + E$ 2. $E + (F + G) \sim (E + F) + G$ 3. $E + 0 \sim E$ 4. $E + E \sim E$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

More Properties I

Proposition

1. $E + F \sim F + E$ 2. $E + (F + G) \sim (E + F) + G$ 3. $E + 0 \sim E$ 4. E + F = F

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4. $E + E \sim E$

Proposition

- 1. $E|F \sim F|E$
- 2. $E|(F|G) \sim (E|F)|G$
- 3. $E|0 \sim E$

More Properties II

Proposition

1.
$$(E + F) \setminus K \sim E \setminus K + F \setminus K$$

2. $(a.E) \setminus K \sim 0$ if $a \in K \cup \overline{K}$
3. $(a.E) \setminus K \sim a.(E \setminus K)$ if $a \notin K \cup \overline{K}$

• Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$

• Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i: 1 \le i \le m$

・ロト・日本・モート モー うへぐ

- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$

• Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i: 1 \le i \le m$

- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{\tau.y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij}\}$

• Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i: 1 \le i \le m$

- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{\tau.y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij}\}$
- $y_{ij} = x_1 | \dots | x_{i-1} | x_{ij} | x_{i+1} | \dots | x_m$

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{ \tau. y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij} \}$
- $y_{ij} = x_1 | \dots | x_{i-1} | x_{ij} | x_{i+1} | \dots | x_m$
- ► $y_{klij} = x_1 | \dots | x_{k-1} | x_{kl} | x_{k+1} | \dots | x_{ij} | x_{i+1} | \dots | x_m$

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{\tau.y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij}\}$
- $y_{ij} = x_1 | \dots | x_{i-1} | x_{ij} | x_{i+1} | \dots | x_m$
- $y_{klij} = x_1 | \dots | x_{k-1} | x_{kl} | x_{k+1} | \dots | x_{ij} | x_{i+1} | \dots | x_m$

Example

 $\begin{array}{rcl} x_1 & \sim & a.x_{11} + b.x_{12} + a.x_{13} \\ x_2 & \sim & \overline{a}.x_{21} + c.x_{22}, \end{array}$

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{\tau.y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij}\}$
- $y_{ij} = x_1 | \dots | x_{i-1} | x_{ij} | x_{i+1} | \dots | x_m$
- ► $y_{klij} = x_1 | \dots | x_{k-1} | x_{kl} | x_{k+1} | \dots | x_{ij} | x_{i+1} | \dots | x_m$

Example

$$\begin{array}{rcl} x_1 & \sim & a.x_{11} + b.x_{12} + a.x_{13} \\ x_2 & \sim & \overline{a}.x_{21} + c.x_{22}, \end{array}$$

$$\begin{array}{rcl} x_1|x_2 & \sim & a.(x_{11}|x_2) + b.(x_{12}|x_2) + a.(x_{13}|x_2) + \\ & & \overline{a}.(x_1|x_{21}) + \\ & & c.(x_1|x_{22}) + \tau.(x_{11}|x_{21}) + \tau.(x_{13}|x_{21}). \end{array}$$

A binary relation B between processes is a weak (or observable) bisimulation provided that, whenever (E, F) ∈ B and a ∈ O ∪ {ε},

- A binary relation B between processes is a weak (or observable) bisimulation provided that, whenever (E, F) ∈ B and a ∈ O ∪ {ε},
- if $E \stackrel{a}{\Longrightarrow} E'$ then $F \stackrel{a}{\Longrightarrow} F'$ for some F' such that $(E', F') \in B$ and

- A binary relation B between processes is a weak (or observable) bisimulation provided that, whenever (E, F) ∈ B and a ∈ O ∪ {ε},
- if $E \stackrel{a}{\Longrightarrow} E'$ then $F \stackrel{a}{\Longrightarrow} F'$ for some F' such that $(E', F') \in B$ and
- ▶ if $F \stackrel{a}{\Longrightarrow} F'$ then $E \stackrel{a}{\Longrightarrow} E'$ for some E' such that $(E', F') \in B$

- A binary relation B between processes is a weak (or observable) bisimulation provided that, whenever (E, F) ∈ B and a ∈ O ∪ {ε},
- ▶ if $E \stackrel{a}{\Longrightarrow} E'$ then $F \stackrel{a}{\Longrightarrow} F'$ for some F' such that $(E', F') \in B$ and
- ▶ if $F \stackrel{a}{\Longrightarrow} F'$ then $E \stackrel{a}{\Longrightarrow} E'$ for some E' such that $(E', F') \in B$
- Two processes E and F are weak bisimulation equivalent (or weakly bisimilar) if there is a weak bisimulation relation B such that (E, F) ∈ B. We write E ≈ F if E and F are weakly bisimilar

Exercise

Which of the following are weakly bisimilar?

		Y/N
a. <i>τ</i> .b.0	a.b.0	
a.(b.0 + τ .c.0)	a.(b.0+c.0)	
a.(b.0 + τ .c.0)	$a.(b.0 + \tau.c.0) + a.c.0$	
a.0 + b.0 + τ .b.0	$a.0 + \tau.b.0$	
$a.0 + b.0 + \tau.b.0$	a.0+b.0	
a.(b.0 + τ .b.0)	a.b.0	

Exercise

Which of the following are weakly bisimilar?

		Y/N
a. <i>t</i> .b.0	a.b.0	Y
a.(b.0 + τ .c.0)	a.(b.0+c.0)	N
a.(b.0 + τ .c.0)	$a.(b.0 + \tau.c.0) + a.c.0$	Y
$a.0 + b.0 + \tau.b.0$	$a.0 + \tau.b.0$	Y
$a.0 + b.0 + \tau.b.0$	a.0+b.0	N
a.(b.0 + τ .b.0)	a.b.0	Y

1. Present a candidate relation R with $(E, F) \in R$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

- 1. Present a candidate relation R with $(E, F) \in R$
- 2. Prove that indeed it obeys the hereditary conditions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. Present a candidate relation R with $(E, F) \in R$
- 2. Prove that indeed it obeys the hereditary conditions
- 3. Example

$$\begin{array}{rcl} A_0 & \stackrel{\mathrm{def}}{=} & a.A_0 + b.A_1 + \tau.A_1 \\ A_1 & \stackrel{\mathrm{def}}{=} & a.A_1 + \tau.A_2 \\ A_2 & \stackrel{\mathrm{def}}{=} & b.A_0 \\ \end{array}$$
$$B_1 & \stackrel{\mathrm{def}}{=} & a.B_1 + \tau.B_2 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$B_1 = a.B_1 + 7.B$$
$$B_2 \stackrel{\text{def}}{=} b.B_1$$

- 1. Present a candidate relation R with $(E, F) \in R$
- 2. Prove that indeed it obeys the hereditary conditions
- 3. Example

$$\begin{array}{rcl} A_0 & \stackrel{\mathrm{def}}{=} & a.A_0 + b.A_1 + \tau.A_1 \\ A_1 & \stackrel{\mathrm{def}}{=} & a.A_1 + \tau.A_2 \\ A_2 & \stackrel{\mathrm{def}}{=} & b.A_0 \end{array}$$

 $B_1 \stackrel{\text{def}}{=} a.B_1 + \tau.B_2$ $B_2 \stackrel{\text{def}}{=} b.B_1$

4. $A_0 \approx B_1$

$$\{(A_0, B_1), (A_1, B_1), (A_2, B_2)\}$$

is a weak bisimulation

• For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$,

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$,
 - 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$,
 - 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.

► Two processes are ob equivalent, denoted by ≈', if they are related by an ob bisimulation relation.

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$,
 - 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.

- ► Two processes are ob equivalent, denoted by ≈', if they are related by an ob bisimulation relation.
- Proposition

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$,
 - 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.

- ► Two processes are ob equivalent, denoted by ≈', if they are related by an ob bisimulation relation.
- Proposition
 - 1. B is a weak bisim if, and only if B is an ob bisim

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$,
 - 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.

- ► Two processes are ob equivalent, denoted by ≈', if they are related by an ob bisimulation relation.
- Proposition
 - 1. *B* is a weak bisim if, and only if *B* is an ob bisim 2. $\approx = \approx'$

Protocol that may lose messages

Sender	$\stackrel{\mathrm{def}}{=}$	$in(x).\overline{sm}(x).Send1(x)$
Send1(x)	$\stackrel{\mathrm{def}}{=}$	$ms.\overline{sm}(x).Send1(x) + ok.Sender$
Medium	$\stackrel{\mathrm{def}}{=}$	sm(y).Med1(y)
Med1(y)	$\stackrel{\rm def}{=}$	$\overline{\mathtt{mr}}(y).\mathtt{Medium} + au.\overline{\mathtt{ms}}.\mathtt{Medium}$
Receiver	$\stackrel{\rm def}{=}$	$mr(x).\overline{out}(x).\overline{ok}.$ Receiver
Protocol	≡	$(\texttt{Sender} \mid \texttt{Medium} \mid \texttt{Receiver}) \backslash \{\texttt{sm}, \texttt{ms}, \texttt{mr}, \texttt{ok}\}$
Cop	$\stackrel{\rm def}{=}$	$in(x).\overline{out}(x).Cop$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$\texttt{Protocol} \approx \texttt{Cop}$

Let B be the following relation

```
{(Protocol, Cop)} ∪
\{((\text{Send1}(m) \mid \text{Medium} \mid \text{ok.Receiver}) \setminus J,
               Cop) : m \in D \} \cup
\{((\overline{sm}(m).\text{Send1}(m) \mid \text{Medium} \mid \text{Receiver}) \setminus J, \}
               \overline{\operatorname{out}}(m).\operatorname{Cop}) : m \in D \} \cup
\{((\text{Send1}(m) \mid \text{Med1}(m) \mid \text{Receiver}) \setminus J,
               \overline{\operatorname{out}}(m).\operatorname{Cop}) : m \in D \} \cup
\{((\text{Send1}(m) \mid \text{Medium} \mid \overline{\text{out}}(m), \overline{\text{ok}}, \text{Receiver}) \setminus J, \}
               \overline{\operatorname{out}}(m).\operatorname{Cop}) : m \in D \} \cup
\{((\text{Send1}(m) \mid \overline{\text{ms}}.\text{Medium} \mid \text{Receiver}) \setminus J, \}
               \overline{\operatorname{out}}(m).\operatorname{Cop}) : m \in D
```

B is a weak bisimulation

$$\begin{array}{lll} Id & = & \{(E,E)\}\\ B^{-1} & = & \{(E,F) : (F,E) \in B\}\\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1\\ & & \text{and } (F,G) \in B_2\} \end{array}$$

<□ > < @ > < E > < E > E のQ @

$$\begin{array}{lll} Id & = & \{(E,E)\}\\ B^{-1} & = & \{(E,F) : (F,E) \in B\}\\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1\\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\begin{array}{lll} Id & = & \{(E,E)\}\\ B^{-1} & = & \{(E,F) : (F,E) \in B\}\\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1\\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. *Id*

$$\begin{array}{lll} ld & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Id
- 2. B_i^{-1}

$$\begin{array}{lll} ld & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. *Id*
- 2. B_i^{-1}
- **3**. B_1B_2

$$\begin{array}{lll} Id & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

- 1. *Id*
- 2. B_i^{-1}
- 3. B_1B_2
- 4. $\bigcup \{B_i : i \geq 1\}$

$$\begin{array}{lll} Id & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

- 1. *Id*
- 2. B_i^{-1}
- 3. B_1B_2
- 4. $\bigcup \{B_i : i \geq 1\}$

Corollary \approx is the largest weak bisimulation

$$\begin{array}{lll} Id & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

- 1. Id
- 2. B_i^{-1}
- 3. B_1B_2
- 4. $\bigcup \{B_i : i \geq 1\}$

Corollary \approx is the largest weak bisimulation Proposition If $E \sim F$ then $E \approx F$

Tau laws

1. $a.\tau.E \approx a.E$ 2. $E + \tau.E \approx \tau.E$ 3. $a.(E + \tau.F) + a.F \approx a.(E + \tau.F)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

► $E \approx \tau.E$ but many cases $E + F \not\approx \tau.E + F$ $a.0 \approx \tau.a.0$ but $a.0 + b.0 \not\approx \tau.a.0 + b.0$

► $E \approx \tau.E$ but many cases $E + F \approx \tau.E + F$ $a.0 \approx \tau.a.0$ but $a.0 + b.0 \approx \tau.a.0 + b.0$

• \approx^{c} is the largest subset of \approx that is also a congruence.

- ► $E \approx \tau.E$ but many cases $E + F \approx \tau.E + F$ $a.0 \approx \tau.a.0$ but $a.0 + b.0 \approx \tau.a.0 + b.0$
- \approx^{c} is the largest subset of \approx that is also a congruence.
- \blacktriangleright \approx is a congruence for all the other operators of CCS.

 $E \approx^{c} F$ iff

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

 $E \approx^{c} F$ iff 1. $E \approx F$

 $E \approx^{c} F \text{ iff}$ 1. $E \approx F$ 2. if $E \xrightarrow{\tau} E'$, then $F \xrightarrow{\tau} F_{1} \xrightarrow{\varepsilon} F'$ and $E' \approx F'$ for some F_{1} and F'

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $E \approx^{c} F$ iff
 - 1. $E \approx F$
 - 2. if $E \xrightarrow{\tau} E'$, then $F \xrightarrow{\tau} F_1 \stackrel{\varepsilon}{\Longrightarrow} F'$ and $E' \approx F'$ for some F_1 and F'
 - 3. if $F \xrightarrow{\tau} F'$ then $E \xrightarrow{\tau} E_1 \xrightarrow{\varepsilon} E'$ and $E' \approx F'$ for some E_1 and E'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@