
Communication and Concurrency: Introduction

Colin Stirling (cps)

School of Informatics

16th September 2013

Goals

◮ Modelling: a notation for describing concurrent systems (CCS)

Goals

◮ Modelling: a notation for describing concurrent systems (CCS)

◮ Equivalence: when two descriptions are the same system

Goals

◮ Modelling: a notation for describing concurrent systems (CCS)

◮ Equivalence: when two descriptions are the same system

◮ Properties: modal and temporal properties of systems.

Goals

◮ Modelling: a notation for describing concurrent systems (CCS)

◮ Equivalence: when two descriptions are the same system

◮ Properties: modal and temporal properties of systems.

◮ Model checking: algorithmic techniques for checking
equivalence and properties.

Goals

◮ Modelling: a notation for describing concurrent systems (CCS)

◮ Equivalence: when two descriptions are the same system

◮ Properties: modal and temporal properties of systems.

◮ Model checking: algorithmic techniques for checking
equivalence and properties.

◮ Software tools: automatically checks properties and
equivalence

An Example: Mutual Exclusion

Mutual Exclusion
 Protocol

Specification: Temporal Properties

◮ Mutual exclusion

Specification: Temporal Properties

◮ Mutual exclusion

◮ Absence of deadlock

Specification: Temporal Properties

◮ Mutual exclusion

◮ Absence of deadlock

◮ Absence of starvation

CCS model of Peterson’s solution

B1f = b1rf.B1f + b1wf.B1f + b1wt.B1t

B1t = b1rt.B1t + b1wt.B1t + b1wf.B1f

B2f = b2rf.B2f + b2wf.B2f + b2wt.B2t

B2t = b2rt.B2t + b2wt.B2t + b2wf.B2f

K1 = kr1.K1 + kw1.K1 + kw2.K2

K2 = kr2.K2 + kw2.K2 + kw1.K1

P1 = b1wt.req1.kw2.P11
P11 = b2rt.P11 + b2rf.P12 + kr2.P11 +

kr1.P12

P12 = enter1.exit1.b1wf.P1

P2 = b2wt.req2.kw1.P21
P21 = b1rf.P22 + b1rt.P21 + kr1.P21 +

kr2.P22

P22 = enter2.exit2.b2wf.P2

Peterson = (P1 | P2 | K1 | B1f | B2f) \L

Formalising Temporal Properties

Mutex = AG ([exit1]ff ∨ [exit2] ff)

NoDeadlock = AG 〈−〉 tt

NoStarvation = AG([req1] AF 〈exit1〉 tt) ∧
AG([req2] AF 〈exit2〉 tt)

Model checking

◮ The Edinburgh Concurrency Workbench
◮ A tool for simulating and verifying CCS agents
◮ http://homepages.inf.ed.ac.uk/perdita/cwb/

Model checking

◮ The Edinburgh Concurrency Workbench
◮ A tool for simulating and verifying CCS agents
◮ http://homepages.inf.ed.ac.uk/perdita/cwb/

◮ Proving Peterson’s solution correct

Model checking

◮ The Edinburgh Concurrency Workbench
◮ A tool for simulating and verifying CCS agents
◮ http://homepages.inf.ed.ac.uk/perdita/cwb/

◮ Proving Peterson’s solution correct
◮ Command: checkprop(Peterson,Mutex);

◮ Command: checkprop(Peterson,NoDeadlock);

◮ Command: checkprop(Peterson,NoStarvation);

Model checking

◮ The Edinburgh Concurrency Workbench
◮ A tool for simulating and verifying CCS agents
◮ http://homepages.inf.ed.ac.uk/perdita/cwb/

◮ Proving Peterson’s solution correct
◮ Command: checkprop(Peterson,Mutex);
◮ true
◮ Command: checkprop(Peterson,NoDeadlock);
◮ true
◮ Command: checkprop(Peterson,NoStarvation);
◮ true

In Reality . . .

Modelling and model checking large (and infinite state) systems

◮ Circuits: since Pentium-bug Intel uses model checking

In Reality . . .

Modelling and model checking large (and infinite state) systems

◮ Circuits: since Pentium-bug Intel uses model checking

◮ Software: Microsoft prototype software model checking

In Reality . . .

Modelling and model checking large (and infinite state) systems

◮ Circuits: since Pentium-bug Intel uses model checking

◮ Software: Microsoft prototype software model checking

◮
...
...

In Reality . . .

Modelling and model checking large (and infinite state) systems

◮ Circuits: since Pentium-bug Intel uses model checking

◮ Software: Microsoft prototype software model checking

◮
...
...

◮ Life: cells and pathways (Systems biology: huge new area)

In Reality . . .

Modelling and model checking large (and infinite state) systems

◮ Circuits: since Pentium-bug Intel uses model checking

◮ Software: Microsoft prototype software model checking

◮
...
...

◮ Life: cells and pathways (Systems biology: huge new area)

Paper on hardware verification and one on BLAST tool for
software verification on course web page

In Reality . . .

Modelling and model checking large (and infinite state) systems

◮ Circuits: since Pentium-bug Intel uses model checking

◮ Software: Microsoft prototype software model checking

◮
...
...

◮ Life: cells and pathways (Systems biology: huge new area)

Paper on hardware verification and one on BLAST tool for
software verification on course web page
Look up “model checking” in Wikipedia, Google, . . .

