
Introduction to Python - Part I

CNV Lab

Paolo Besana

22 - 26 January 2007

This quick overview of Python is a reduced and altered version of
the online tutorial written by Guido Van Rossum (the creator of
Python), that can be found at the URL:
http://docs.python.org/tut/tut.html

1 Interpreter

A great advantage of Python is the option of launching the interpreter and di-
rectly executing commands. This can save a lot of time when you are developing
software: when you are not sure about something, you can often test it directly
from the interpreter, without the overhead of having a small program to launch
from the command line. The interpreter is launched by typing the following
command in the shell:

python

Once the interpreter has been launched, lines previously inserted in the inter-
preter shell can be recalled pressing the ↑ cursor button. To exit the interpreter,
press Control-D.
To launch a program written in Python, type the following command from the
shell:

python programname.py

Open a terminal window. Create a new directory called "MyPython ":
s0xxxxx: mkdir MyPython

Go to this directory:
s0xxxxx: cd MyPython

Launch Python Interpreter:
s0xxxxx: python

2 Basic Programming

Unlikely most other programming languages, in Python, the formatting of the
code has a meaning: there are no braces or begin/end delimiters around blocks
of code: groups of statements are indented under a header. Blocks of code can
be nested, using increasing indentation. There are no end-of-line symbols, like
the semicolon (;) in Java or C: the new line marks the end of a line.

1

2.1 Basic Types

Numbers

The interpreter can be used as a simple calculator.
� Enter the following expression in the python interpreter you have just launched:

> > > 2+2

> > > 3*2

Strings

Strings can be enclosed in single or double quotes.

� Type the lines introduced by "> > >" and by "..."

> > > 'hello'

> > > 'how\'s going?'

> > > "how's going?"

Strings can be enclosed in pairs of triple quotes, either """ or �'. In this case
it is not necessary to escape end of lines.

� Type the lines introduced by "> > >" and by "..."

> > > print """

... This is a string that when

... printed mantains its format.

... """

Strings can be concatenated using the + operator, and can be repeated with
the operator *.

� Type the lines introduced by "> > >" and by "..."

> > > 'Hello ' + ', ' + 'how are you'

> > > 'help' + '!'*5

The individual characters of a string can be accessed using indices. The �rst
character has index 0. Substrings can be speci�ed with slice notation: two
indices separated by colon. When using slices, indices can be thought as pointing
between character, instead of pointing to characters: the left edge of the �rst
character is 0 and so on.

� Type the lines introduced by "> > >" and by "..."

> > > word="hello"

> > > word[0]

> > > word[2]

> > > word[2:4]

2

> > > word[:2]

> > > word[2:]

Negative indices start to count from the right.

� Type the lines introduced by "> > >" and by "..."

> > > word[-1]

> > > word[-2:]

upper() and lower() convert the characters of a string into upper case and
lower case:

� Type the lines introduced by "> > >" and by "..."

> > > 'Hello!'.upper()

> > > 'Hello!'.lower()

strip() function removes the spaces at the beginning and at the end of the
string:

� Type the lines introduced by "> > >" and by "..."

> > > ' Hello ! '.strip()

Strings cannot be modi�ed once they are created. Trying to modify a substring
results in an error. However, it is easy to create a new string concatenating
substrings from other strings.

Lists

There are di�erent types of compound structures in Python. The most versatile
is the list.

� Type the lines introduced by "> > >" and by "..."

> > > L = ['mon','tue','wed','thu','fri']

> > > L

List items can also be accessed using indices. They can be sliced and concate-
nated like strings.

� Type the lines introduced by "> > >" and by "..."

3

> > > L[0]

> > > L[3]

> > > L[1:3]

> > > L + ['sat','sun']

It is possible to check the membership of an element in a list using the keyword
in.

� Type the lines introduced by "> > >" and by "..."

> > > 'wed' in L

> > > 'sun' in L

Items can be added at the end of a list using the method append(item) of the
list object.

� Type the lines introduced by "> > >" and by "..."

> > > L3 = []

> > > L3.append(1)

> > > L3.append(2)

> > > L3

It is possible to measure the length of a list using the built-in function len(list).

� Type the lines introduced by "> > >" and by "..."

> > > len(L)

2.2 Control Structures

Python o�ers the usual control �ow statements, as other languages like Java or
C. The for loop is more powerful than in most of the other languages.

if

� Type the lines introduced by "> > >" and by "..."
[When asked, insert a binary sequence (such as 00101 or 10010)]

> > > x=rawinput("Enter a binary sequence : ")

> > > if (x[0]=='0'):

... print "Starts with 0"

... elif (x[0] == '1'):

... print "Starts with 1"

... else:

... print "Error"

It is possible to create more complex conditions using the keywords and for
conjunction and or for disjunction.

4

while

The while statement repeats the indented block of code as long as the condition
is true:

� Type the lines introduced by "> > >" and by "..."

> > > x = 10

> > > while (x > 0):

... print x

... x = x - 1

for

The for statement iterates over the items of any sequence (such as strings or
lists).

� Type the lines introduced by "> > >" and by "..."
[the variable L has already been assigned by you (see page 3)]

> > > for x in L:

... print x

...

To iterate over a sequence of numbers the built-in function range() is used to
automatically generate them.

� Type the lines introduced by "> > >" and by "..."

> > > range(5,10)

> > > for x in range(3):

... print x

...

> > > for x in xrange(3):

... print x

...

(Here xrange() is a variant of range() that is optimized for use in for loops;
it generates each element as it is needed rather than requiring a big chunk of
memory at the start.)

Exercise 1

Type:

> > > Lst = ['how', 'why', 'however', 'where', 'never']

Write a loop in the python interpreter (which should still be open) that prints
for every element in the list:

� a star symbol *

� the �rst two letters from the element

� the whole element

5

producing something like:

* ho how

* wh why

...

Exercise 2

Modify the previous loop to print a star ('*') in front of the elements that start
with �wh� and a plain space ` ' in front of the others, producing something like:

ho how

* wh why

...

2.3 Functions

A function is introduced by the keyword def. It must be followed by the function
name and by the list of parameters in parenthesis. The statements that form
the function body start the next line, and are indented. The �rst line can be an
optional string that describes the function. This string can be used by automatic
generators of documentation.

� Type the lines introduced by "> > >" and by "..."

> > > def square(value):

... """Return the square of the value"""

... return value*value ...

> > > square(4)

Exercise 3

Write a function checkPrefix(list, prefix) in the python interpreter (which
should still be open). The function wraps the loop created in the previous
exercise: when called it must print the content of the list, adding a star in front
of the elements that start with the pre�x.

2.4 List Comprehensions

List comprehensions provide a concise and clear way to create lists, which is
often quite important for writing readable and maintainable Python code. Each
list comprehension consists of an expression followed by a for clause, then zero
or more for or if clauses. The result will be a list resulting from evaluating the
expression in the context of the forandifclauses that follow it. If the expression
would evaluate to a tuple, it must be parenthesized.

� Type the lines introduced by "> > >" and by "..."

> > > freshfruit = [' banana', ' loganberry ', 'passion fruit ']

> > > [w.strip() for w in freshfruit]

6

> > > v = [2, 4, 6]

> > > [3*x for x in v]

The if clause is used to �lter the elements that have to appear in the generated
list:

� Type the lines introduced by "> > >" and by "..."

> > > [3*x for x in v if x > 3]

> > > [3*x for x in v if x < 2]

> > > [[x,x**2] for x in v]

> > > [(x, x**2) for x in v]

It possible to combine items from di�erent lists, obtaining a Cartesian product
of elements, using a for clause for each list :

� Type the lines introduced by "> > >" and by "..."

> > > v1 = [2, 4, 6]

> > > v2 = [4, 3, -9]

> > > [x*y for x in v1 for y in v2]

> > > [x+y for x in v1 for y in v2]

> > > [v1[i]*v2[i] for i in range(len(v1))]

> > > [str(round(355/113.0, i)) for i in range(1,6)]

Exercise 4

Using list comprehension:

� Write code that converts the elements in the following list:

L4 = ['hello', 'how', 'are', 'you']

into upper case

� Write code that generates a list containing only the even numbers, divided by
2, from the following list:

L5 = [3, 52, 21, 43, 12, 18, 17]

Hint: a number is even if the remainder of a division by 2 is equal to 0 (the
remainder is obtained using %: 4%2==0, 5%2==1)

7

� Write code that generates, from the following list, a list containing pairs com-
posed of the values and their parity values:

L5 = [3, 52, 21, 43, 12, 18, 17]

Each pair is a list composed of two elements: the value itself, and true if value
is even or false otherwise

2.5 Modules

Programs can become long, and it is a good approach to divide them into more
manageable units. In Python, programs can be divided into modules. The
modules can be imported directly into the interpreter or into other programs.
Python has a very large library of prede�ned functions and classes that can be
imported and used.

� Type the lines introduced by "> > >" and by "..."

> > > import math

When we call the function, it is necessary to pre�x it with the module name, to
avoid name con�icts:

� Type the lines introduced by "> > >" and by "..."

> > > math.pi

> > > math.pow(2,5)

We can also import only the function we need, and in this case it is not necessary
to pre�x it with the module name.

� Type the lines introduced by "> > >" and by "..."

> > > from math import pow

> > > pow(2,5)

If you modify a �le, you need to reload the module using reload(modulename),
although this doesn't always do what you might expect because itdoes not reload
anything the module depends on.

� End your interpreter session (CTRL+D)

8

